LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING
(AUTONOMOUS)

HARD K PAYS
Estd: 1998

Department of Computer Science & Engineering

20CS60 @
NS-3 COMPUTER NETWORKS LAB e ol
Name of the Student:
Registered Number:
Branch & Section: & ./Sec :\%{'; .

Academic Year: 2021 2022

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING
(AUTONOMOUS)

Estd: 1998

Thisistocertifythatthisisabonafiderecordofthepracticalworkdoneby

MI./MS. .oer s s s s s s s e ey DEAring Regd.Num.:20761A05..............

Of B.tech............Branch,.......... 20CS60 - COMPUTER NETWORKS LAB

During the Academic Year:

No. of Experiments/Modules held:
No. Of Experiments Done:

Date: / / Signature of the Faculty

INTERNALEXAMINER EXTERNALEXAMINER

VISION

The Computer Science & Engineering aims at providing continuously stimulating educational environment to its
students for attaining their professional goals and meet the global challenges.

MISSION

1. To develop a strong theoretical and practical background across the computer science discipline with an
emphasis on problem solving.

2. Toinculcate professional behavior with strong ethical values, leadership qualities, innovative thinking and
analytical abilities into the student.

3. Expose the students to cutting edge technologies which enhance their employability and knowledge.

4. Facilitate the faculty to keep track of latest developments in their research areas and encourage the faculty to
foster the healthy interaction with industry.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs):

PEO1

Pursue higher education, entrepreneurship and research to compete at global level.

PEO2

Design and develop products innovatively in the area of computer science and engineering and in other
allied fields.

PEO3

Function effectively as individuals and as members of a team in the conduct of interdisciplinary projects;
and even at all the levels with ethics and necessary attitude.

PEO4

Serve ever-changing needs of the society with a pragmatic perception.

PROGRAM OUTCOMES (POs):

Engineering Knowledge

PO1 | Apply knowledge of mathematics, science, engineering fundamentals, and specialized engineering
knowledge to solve complex engineering problems.
Problem Analysis

PO2 | Identify, formulate, review research literature, and analyze complex engineering problems to arrive at
substantiated conclusions using principles of mathematics, natural sciences, and engineering sciences.
Design and Development of Solutions

PO3 Design solutions for complex engineering problems and develop system components or processes that
meet specified needs, considering public health and safety, as well as cultural, societal, and
environmental aspects.
Conduct Investigations of Complex Problems

PO4 | Utilize research-based knowledge and methods, including experimental design, data analysis,
interpretation, and information synthesis, to draw valid conclusions.

Modern Tool Usage

PO5 | Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools,
including predictive modeling, to complex engineering activities while understanding their limitations.
The Engineer and Society

PO6 | Apply reasoning informed by contextual knowledge to evaluate societal, health, safety, legal, and
cultural issues and responsibilities relevant to professional engineering practice.
Environment and Sustainability

PO7 | Understand the impact of professional engineering solutions in societal and environmental contexts
and demonstrate knowledge of the need for sustainable development.
Ethics

PO8 | Adhere to ethical principles and commit to professional ethics, responsibilities, and norms of
engineering practice.
Individual and Teamwork

PO9 | Work effectively as an individual, as a member, or as a leader in diverse teams and multidisciplinary
settings.
Communication
Communicate effectively on complex engineering activities with the engineering community and

PO10 . o o
society at large. This includes writing effective reports, preparing design documentation, delivering
presentations, and giving or receiving clear instructions.
Project Management and Finance
Demonstrate knowledge and understanding of engineering and management principles and apply

PO11 ; o y . L
these to one’s work as an individual, team member, or leader to manage projects in multidisciplinary
environments.
Life-long Learning

PO12 | Recognize the need for, and have the ability to engage in independent and lifelong learning in the

context of technological advancements.

PROGRAM SPECIFIC OUTCOMES (PSOs):

PSO1

The ability to apply Software Engineering practices and strategies in software project development
using open-source programming environment for the success of Organization

PSO2

The ability to design and develop computer programs in networking, web applications and 10T as per
the society needs

PSO3

To inculcate an ability to analyze, design and implement database applications

Index

Name of the program

Page number

Date

Signature

1. To gain familiarity with the basic
network commands & utilities available in
the Linux OS.

2. To learn about network layer tools and
analyze captures for congestion.

3. To learn about queue management
techniques, and global routing in ns3.

4. To learn about broadcasting,
multicasting, and bridging in a Local Area
Network using ns3.

5. To learn about Wifi and Mobile Adhoc
topologies with ns3.

6. To introduce Socket Programming in
TCP and UDP.

7. Observations of Transmission Control
Protocol (TCP) Connection states, Flags
and Flow control.

8. To learn Transmission Control Protocol
(TCP) Flow Control, Error Control, and
Congestion.

9. To introduce Wireshark &tcpdump, and
observation of packets in a LAN network.

10. To analyze HTTP packets using
Wireshark tool, and understand the
records returned by a DNS server.

Experiment-1

Aim: To gain familiarity with the basic ‘networks’ commands & utilities available in the Linux

0s.

Some general tips:

e If any command is not installed on your system, do sudo apt-get update on the Terminal
followed by sudo apt-get install <name>to install it.
e To see more details about any command, type man <name>on the Terminal.
e Running <name> -h on your Terminal will display the help menu of that command.
Procedure:

Run the following commands on your Terminal window.

1) Troubleshooting network hosts

a) ping <address>
Short for Packet InterNet Groper, the ping command is used to test the ability of your
computer to reach a specified destination computer. The ping command is usually used as a
simple way to verify that a computer can communicate over the network with another
computer or network device. The ping utility is commonly used to check for network errors,
and works by sending ICMP ECHO_REQUEST to network hosts.

drnagaprasanthi@ubuntu: ~
File Edit View Search Terminal Help
=43 time=289 ms

[1]+ Stopped ping lbrce.ac.in

drnagaprasanthi@ubuntu:~$ ping lbrce.ac.in

PING lbrce.ac.in (160.153.91.69) 56(84) bytes of data.

64 bytes from 69.91.153.160.host.secureserver.net (160. .91. : icmp_seq=1 tt
1=43 time=289 ms

64 bytes from 69.91.153.160.host.secureserver.net (160. .91. : lcmp_seq=2 tt
1=43 time=289 ms

64 bytes from 69.91.153.160.host.secureserver.net (160. .91. : icmp_seq=3 tt
1=43 time=289 ms

64 bytes from 69.91.153.160.host.secureserver.net (160. .91. : lcmp_seq=4 tt
1=43 time=289 ms

64 bytes from 69.91.153.160.host.secureserver.net (160. .91. : lcmp_seq=5 tt
1=43 time=289 ms

64 bytes from 69.91.153.160.host.secureserver.net (160. .91. : icmp_seq=6 tt
1=43 time=289 ms

64 bytes from 69.91.153.160.host.secureserver.net (160. .01. : lcmp_seq=7 tt
1=43 time=289 ms

64 bytes from 69.91.153.160.host.secureserver.net (160. .91. : lcmp_seq=8 tt
1=43 time=289 ms

64 bytes from 69.91.153.160.host.secureserver.net (160. .91. : icmp_seq=9 tt
1=43 time=293

64 bytes from .91.153.160.host.secureserver.net (160. .91, : lcmp_seq=10 t

Figure.l. Output of ping command

Ping two different machines, one within India and the other one outside India, and

observe the latency.

Understanding about network interfaces

b) ifconfig [options]
ifconfigis used to configure the network interfaces. It is used at boot time to set up

interfaces as necessary. After that, it is usually only needed when debugging or when

system tuning is needed.

If no arguments are given, ifconfigdisplays the status of the currently active interfaces.

ipcil@ipcil-ThinkCentre-M71e:~$ ifconfig

etho

Link encap:Ethernet HWaddr 8c:89:a5:21:47:18

inet addr:172.16.4.100 Bcast:172.16.4.127 Mask:255.255.255.128
inet6 addr: fe8@::8e89:a5ff:fe21:4718/64 Scope:Link

UP BROADCAST RUNWING MULTICAST MTU:1508 Metric:1

RX packets:239800 errors:0 dropped:® overruns:®@ frame:@

TX packets:116557 errors:0 dropped:® overruns:® carrier:0
collisions:® txqueuelen:1008

RX bytes:289189259 (289.1 MB) TX bytes:15052528 (15.@ MB)

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

ineté addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:8207 errors:0 dropped:® overruns:® frame:®
TX packets:8207 errors:® dropped:® overruns:@ carrier:@
collisions:0 txqueuelen:@

RX bytes:858625 (858.6 KB) TX bytes:858625 (B58.6 KB)

ipci@ipci-ThinkCentre-M71e:~5§

Figure.2. The output of “ifconfig” command

If a single interface argument is given, it displays the status of the given interface only;

ipci@ipci-ThinkCentre-M71e:~5 ifconfig ethe

ethe

Link encap:Ethernet HWaddr B8c:89:a5:21:47:18

inet addr:172.16.4.100 Bcast:172.16.4.127 Mask:255.255.255.128
inet6 addr: fe80::8e89:a5ff:fe21:4718/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:239848 errors:0 dropped:@ overruns:® frame:@

TX packets:116606 errors:0® dropped:® overruns:® carrier:@0
collisions:® txqueuelen:1860

RX bytes:289194989 (289.1 MB) TX bytes:15865874 (15.0 MB)

Figure.3. The output displayed on running “ifconfig eth0”

if a single -a argument is given, it displays the status of all interfaces, even those that are

down.

ipcli@ipci-ThinkCentre-M7i1e:~$ ifconfig -a
ethoe Link encap:Ethernet HWaddr 8c:89:a5:21:47:18
inet addr:172.16.4.16806 Bcast:172.16.4.127 Mask:255.255.255.128
inet6 addr: feB0::8e89:a5ff:fe21:4718/64 Scope:Link
UP BROADCAST RUNMIMNG MULTICAST MTU:1500 Metric:1
RX packets:239855 errors:0 dropped:® overruns:0 frame:o
TX packets:116612 errors:0 dropped:® overruns:0 carrier:o
collisions:® txqueuelen:1006
RX bytes:289196059 (289.1 MB) TX bytes:15868124 (15.8 MB)

Link encap:Local Loopback

inet addr:127.90.8.1 Mask:255.0.0.0

inetd addr: ::1/128 Scope:Host

UP LOOPBACK RUMNMIMNG MTU:65536 Metric:1

RX packets:8215 errors:0 dropped:® overruns:® frame:@
TX packets:8215 errors:0 dropped:® overruns:® carrier:e
collisions:® txqueuelen:0

RX bytes:859431 (859.4 KB) TX bytes:859431 (859.4 KB)

Figure.4. The output displayed on running “ifconfig -a”
What is the IPv4 address of your computer?

What is the MAC address/HW address of your NIC card?

€) sudoifconfig ethO down
The above command will bring the ethernet interface down, meaning, the system would be
disconnected from the network. Now, try to ping any network host. What is the observed
output?

d) sudoifconfig ethO up
This command will call DHCP service which is involved in obtaining an IP address. Now, ping
to any external system. What is the observed output?

e) ifplugstatus
The ifplugstatus command will tell you whether a cable is plugged into a network interface
or not. It isn’t installed by default on Ubuntu. Use the following command to install it:

sudo apt-get install ifplugd

ipci@ipci-ThinkCentre-M71e:~$ sudo apt-get install ifplugd
[sudo] password for ipcil:
Reading package lists... Done
Building dependency tree
Reading state information... Done
Suggested packages:
waproamd
The following NEW packages will be installed:
ifplugd
0 upgraded, 1 newly installed, @ to remove and 457 not upgraded.
Need to get 64.0 kB of archives.
After this operation, 270 kB of additional disk space will be used.
Get:1 http://in.archive.ubuntu.comf/ubuntu/ trusty/universe ifplugd 1386 0.28-19ubuntul [64.8 kB]
Fetched 64.8 kB in 1s (45.9 kB/s)
Preconfiguring packages ...
Selecting previously unselected package ifplugd.
(Reading database ... 163571 files and directories currently installed.)
Preparing to unpack .../ifplugd_©.28-19ubuntul_1i386.deb ..
Unpacking ifplugd (©.28-19ubuntul)
Processing triggers for man-db (2.6.7.1-1)
Processing triggers for ureadahead (0.100.0-16) ...
ureadahead will be reprofiled on next reboot
Setting up ifplugd (@.28-19%9ubuntul) ...
Processing triggers for ureadahead (0.100.0-16) ...

Figure.5. Installing “ifplugd” in Ubuntu system The

output of ifplugstatus command when the cable is plugged.

ipc1@ipci-ThinkCentre-M71e:~5 ifplugstatus
lo: 1link beat detected
ethe: 1link bzat datectad

2) Finding all the intermediate network systems

a) traceroute <address>
Itisn’t installed by default on Ubuntu. Use the following command to install it:

sudo apt-get install traceroute

traceroute is a command used to display the intermediate nodes through which a packet
flows from a source location to a destination location. A program capable of doing the same
in Microsoft Windows is tracert.

ipci@ipci-ThinkCentre-M71e:~$ traceroute bits-pilani.ac.in
traceroute to bits-pilani.ac.in (202.78.175.200), 30 hops max, 60 byte packets

1 172.16.4.2 (172.16.4.2) ©0.488 ms 0.502 ms 0.601 ms

2 172.16.0.30 (172.16.06.30) 0.171 ms 0.175 ms 0.169 ms

3 static-69.6.93.111.tataidc.co.in (111.93.6.69) 49.636 ms 50.148 ms 50.147 ms

4 14.141.87.141.static-hyderabad.tcl.net.in (14.141.87.141) 49.587 ms 49.593 ms 115.113.207.153.stati
c-hyderabad.vsnl.net.in (115.113.207.153) 49.581 ms

5 172.29.250.34 (172.29.250.34) 55.857 ms 57.240 ms 55.687 ms
172.25.75.246 (172.25.75.246) 59.170 ms 58.021 57.996 ms
115.113.254.18.static-delhi.vsnl.net.in (115.113. 18) 59.012 ms 35.659 ms 34.937 ms
202.78.175.46 (202.78.175.46) 35.295 ms 32.466 ms 32.301 ms
202.78.168.30 (202.78.168.30) 39.161 ms 39.136 ms 36.193 ms
202.78.173.58 (202.78.173.58) 52.669 ms 50.606 ms 52.411 ms
nsl.bits-pilani.ac.in (2602.78.175.200) 53.657 ms 53.632 ms 53.627 ms

Figure.7. The output of “traceroute” command

Observe the latency for every hop, IP address of the First hop router, and First hop of your ISP, and
Total number ISPs which your search explored.

1) DNS tools
Find the IP addresses of the following machines:
bits-hyderabad.ac.in
swd.bits-hyderabad.ac.in
sites.bits-hyderabad.ac.in

a) nslookup<address>
nslookupis a program to query Internet domain name servers. nslookup has two modes:
interactive and noninteractive. Interactive mode allows the user to query name servers for
information about various hosts and domains or to print a list of hosts in a domain. Non-
interactive mode is used to print just the name and requested information for a host or

domain.

drnagaprasanthi@ubuntu:~% nslookup lbrce.ac.in
Server: 127.6.6.53
Address: 127.0.08.53#53

Mon-authoritative answer:
Mame : lbree.ac.in
Address: 166.153.91.69

Figure.8. The output of “nslookup” command

10

b) host <address>
host is a simple utility for performing DNS lookups. It is normally used to convert names to
IP addresses and vice versa. When no arguments or options are given, host prints a short
summary of its command line arguments and options.

drnagaprasanthi@ubuntu: ~

File Edit View Search Terminal Help
drnagaprasanthi@ubuntu:~5 host lbrce.ac.in

lbrce.ac.in has address 160.153.91.69

lbrce.ac.in mail is handled 1 alt3.aspmx.l.google.com.
lbrce.ac.in mail is handled 1 alt2.aspmx.l.google.com.
lbrce.ac.in mail is handled 1 alt4.aspmx.l.google.com.
lbrce.ac.in mail is handled 1 aspmx.l.google.com.
lbrce.ac.in mail is handled 1 altl.aspmx.l.google.com.
drnagaprasanthi@ubuntu:~% I

The output of “host” command

c) dig<address>
domain information groper or dig is a flexible tool for interrogating DNS name servers. It
performs DNS lookups and displays the answers that are returned from the name server(s)
that were queried.

drnagaprasanthi@ubuntu: ~
File Edit Wiew Search Terminal Help
drmnagaprasanthi@ubuntu:~% dig lbrce.ac.in

==>=> DLiG 2.11.3-1ubuntul.18-Ubuntu lbrce.ac.in

global options: +cmd

Got answer:

-==>=HEADER<<- opcode: QUERY, status: NOERROR, id: 30023

flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: @, ADDITIOMNAL: 1

> »

OPT PSEUDOSECTIOM:

EDNS: wersion: @, flags:; udp: 65494
53 QUESTION SECTION:
;lbrce.ac.in. IN

33 ANSWER SECTIOM:
lbrce.ac.in. B \ - 168.153.91.69

Query time: @ msec

SERVER: 127.0.0.53¥53(127.06.8.53)
WHEM: Sat Oct ©1 12:05:51 IST 2022
MSG SIZE rcwvd: 56

drmagaprasanthi@ubuntu:~5 .

e output of “dig” command

11

d) DNS Configuration file
All DNS tools makes use of system DNS configuration file located at /etc directory
(/etc/resolv.conf). The contents of the file should appear like the below screenshot.

ipci@ipci-ThinkCentre-M71e:~% more fetc/resolv.conf
Dynamic resolv.conf(5) file for glibc resolver(3) generated by resolvconf(8)

DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTEN
nameserver 127.0.1.1

Figure.11. The configuration file “/etc/resolv.conf”

2) Copying files from/to a remote host
a) scp
scp allows files to be copied to, from, or between different hosts.
For example,
“scpremote_username@remote_host:/home/remote_username/file.txt /home/your_username”
will copy the file “file.txt” (located at /home/remote_username) of the remote host
“remote_host” to your local directory (/home/your_username).

To download the tar file (CNLab1.tar) from host 172.16.4.100 to your system, the command is
sudoscp ipc1@172.16.4.100:/home/ipc1/CNLabl.tar /home/ipcl

ipci@ipci-ThinkCentre-M71e:~$ sudo scp ipc1@172.16.4.100:/home/ipc1/CNLabl.tar /home/ipcil
[sudo] password for ipcil:

The authenticity of host '172.16.4.100 (172.16.4.100)' can't be established.

ECDSA key fingerprint is Ob:ff:85:42:36:f7:ae:6a:2d:84:c0:f9:05:a3:2f:d7.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '172.16.4.100' (ECDSA) to the list of known hosts.

i1pc1@172.16.4.100's password:

CNLab1. tar 100% 2560 2.5KB/s 00:00

ipci@ipci-ThinkCentre-M71e:~$

Figure.12. Ubuntu Terminal Output
To upload a tar file (2011A7PS111H.tar) from your local directory to a remote directory, the
command is

sudoscp /home/ipc1/2011A7PS111H.tar ipc1@172.16.4.100:/home/ipcl

ipc1@ipct-ThinkCentre-M71e:~$ sudo scp /home/ipc1/2011A7PS111H. tar ipc1@172.16.4.100: /home/ipcd

ipc1Q172.16.4.100's password:
2011A7PS111H, tar 100% 0 0.0kB/s 00:00

Figure.13. Ubuntu Terminal Output

Now, try to download the folder (/home/ipcl/Lab1) from host 172.16.4.100 to your local PC. Also,
try to upload your own folder to a remote host. (The folder and all its contents including sub-folders

should be copied).

12

3) To test the speed of internet connection
Run the following commands for installing speedtest-cli package.

sudo apt-get install python-pip sudo
pip install speedtest-cli

After installation, type “speedtest” in the Terminal and press enter. The output should be similar
to the figure below.

ipci@ipci-ThinkCentre-M71e:~5 speedtest

Retrieving speedtest.net configuration...

Retrieving speedtest.net server list...

Testing from Tata Teleservices ISP (111.93.5.194)...
Selecting best server based on latency...

Hosted by Pioneer Elabs Limited. (Hyderabad) [1.@5 km]: 45.016 ms
Testing download speed

Download: 24.94 Mbits/s

Testing upload speed

Upload: 81.91 Mbits/s

Figure.14. Ubuntu Terminal Output

References:

1. Linux ‘man pages’ available athttp://linux.die.net/man/

2. http://www.computerhope.com/
http://www.webupd8.org/2014/02/how-to-test-internet-speed-via-command.html

13

http://www.google.com/url?q=http%3A%2F%2Flinux.die.net%2Fman%2F&sa=D&sntz=1&usg=AFQjCNFGMIza-8K_aJ4xqzNICsJjvXMyHg
http://www.google.com/url?q=http%3A%2F%2Fwww.computerhope.com%2F&sa=D&sntz=1&usg=AFQjCNF36_1kuvJiFxBlKXrxZXIhdqfDbQ
http://www.webupd8.org/2014/02/how-to-test-internet-speed-via-command.html

Experiment-2

AIM:- To learn about network layer tools and analyze captures for congestion.

To view routing table entries:

A routing table, or routing information base (RIB), is a data table stored in a router or a
networked computer that lists the routes to particular network destinations, and in some cases,
metrics (distances) associated with those routes. The routing table contains information about the
topology of the network immediately around it. The construction of routing tables is the primary goal
of routing protocols. Static routes are entries made in a

routing table by non-automatic means, which are fixed rather than being the result of some
network topology "discovery" procedure.

“route” command is used to print, add, delete, edit routes in kernel’s IP routing table. Its
primary use is to set up static routes to specific hosts or networks via an interface after it has been
configured with the ifconfig program. When the add or del options are used, route modifies the
routing tables. Without these options, route displays the current contents of the routing tables.

Tools used: route, ip route

Experiment 1:
1. Print routing table of your system. Use manual pages to capture observations that follow.

a. The command is “route”. Type “route” in Ubuntu terminal.
BOX:~

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use

default 10.0.2.2 0.0.0.0 UG 0 0
10.0.2.0 * 255.255.255.0 U 1 (0]
link-local * 255.255.0.0 U 1000

Figure.1.1 “route” output

a) What is the IP address of the default gateway (in your IPC system)?
b) What does the flags ‘U’ and ‘G’ represent?
C) What is the metric value for default gateway?

b. Option “-n” displays all symbolic references in numeric values.

14

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 10.0.2.2 0.0.0.0 UG 0 0 0 etho
10.0.2.0 0.0.0.0 2555255.255.08 U 1 0 0 etho
169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 etho

Figure.1.2 “route” numeric output
a) Which route will be taken by a packet with destination address as 172.16.5.128?

c. For faster processing, the routing table is stored in kernel cache. To retrieve table from
cache, use option “-C”. By default, “route” command shows the table stored in FIB.

gokul@gokul-VirtualBox:~$ route -C
Kernel IP routing cache
Source Destination Gateway Flags Metric Ref Use Iface

Figure.1.3 “route” output from kernel cache

ernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 UG 0 0 0 etho
255.255.255.0 U 1) 0 etho
255.255.0.0 U 1000 0 etho

Figure.1.4 “route” output from FIB

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface MSS Window irtt
0.0.0.0 10.0.2.2 0.0.0.0 UG 0 0 0 etho 0 0 0
10.0.2.0 .0.0 255.255.255.0 U 1 0 0 etho 0 0 0

0

0.0.0.
169.254.0.0 0.0.0. 255.255.0.0 U 1000 © 0 etho 0 0 0

Figure.1.5 “route” long listing
a) What are MSS and Window?

e. “netstat” command can also be used to display routing table.
goku L@gokul-VirtualBox:~$ netstat -r

ernel IP routing table
Destination Gateway Genmask Flags MSS Window 1irtt Iface

0.0.0.0 UG 0 0 0 etho
255.255.255.0 U 0 0 0 etho
ink-local 255.255.0.0 u 0 0 0 etho

Figure.1.6 “netstat” for displaying routing table
2. Add a route to the kernel route table
a. In order to add/delete routes, you should have root privileges. In the below figure, a
loopback address is added to the route.

15

root@gokul-VirtualBox:~# route add -net 127.0.0.0 netmask 255.0.0.0 dev
root@gokul-VvirtualBox:~# route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref

0.0.0.0 10.0.2.2 0.0.0.0 UG 0 0
10.0.2.0 .0.0. 255.255.255.0 U al 0
127.0.0.0 .0.0. 255.0.0.0 U 0 0
169.254.0.0 .0.0. 255.255.0.0 U 0

Figure.1.7 Adding a loopback address
a) what happens when you add options of “window 6000 mss 1440 irtt 300” to the route

command in the above figure (note: to ‘add’ the route again, you must ‘delete’ it
first as explained in step 3)

b. In the below figure, a route to IP address “192.56.76.0” is added. The next hop is

interface ethO.
root@gokul-vVirtualBox:~# route add -net 192.56.76.0 netmask 255.255.255.0 dev eth®
root@gokul-vVirtualBox:~# route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
default 10.0.2.2 0.0.0.0 UG 0 etho
10.0.2.0 o 255.255 u etho
127.0.0.0 255.0.0. U lo
link-local 255.255.0. etho
192.56.76.0 255.255 9) etho

Figure.1.8 Adding “192.56.76.0” as IP address

3. Delete a route in the kernel route table
a. Delete route for IP address “192.56.76.0” created in step 2b.

root@gokul-vVirtualBox:~# route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
default 16:.9:2.2 0.0.0.0 UG 0 0 0 etho
10.0.2.0 b 255.255.255.0 U 1 0 0 ethe
127.0.0.0 b 255.0.0.0 U 0 0 0 lo
link-local x 255.255.0.0 U 1000 0 0 etho

Figure.1.9 Delete “192.56.76.0” address from routing table
b. Delete loopback address route.
root@gokul-VirtualBox:~# route del -net 127.0.0.0/8
root@gokul-virtualBox:~# route

Kernel IP routing table
Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 UG 0 ® etho
255.255.255.6 u 1 0 ethoe
255.255.0.0 U 1000 0 etho

Figure.1.10 Delete loopback address

4. Add/Remove a default gateway
In the below experiment, we will delete the default gateway and re-create it.
a. Delete the route for default gateway by the following the below figure.

16

root@gokul-VirtualBox:~# route del default
root@gokul-VirtualBox:~# route
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
10.0.2.0 * 255.255.255.0 U 1 0 0 etho
link-local x 255.255.0.0 U 1000 0 0 etho

Figure.1.11 Delete default gateway

b. Use your browser and connect to gmail.com (or any other web-site). There will be a
connection error because default gateway is unavailable. The above can also be tested

using a “ping” command as shown below.
root@gokul-VirtualBox:~# ping google.com
ping: unknown host google.com
root@gokul-virtualBox:~# ping yahoo.com
ping: unknown host yahoo.com

Figure.1.12 ping not working

Add the default gateway back to its original value (172.16.4.1 for IPC1 lab).

root@gokul-VirtualBox:~# route add default gw 10.0.2.2 etho
root@gokul-VirtualBox:~# route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 10.0.2.2 0.0.0.0 UG 0 0 0 etho
10.0.2.0 0.0.0.0 255.255.255.0 U 1 0 0 ethe
169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 etho
root@gokul-virtualBox:~# ping gmail.com

PING gmail.com (74.125.236.149) 56(84) bytes of data.

64 bytes from bom03s02-in-f21.1e100.net (74.125.236.149): icmp_req=1 ttl=56 time=66.7 ms
64 bytes from bom03s02-in-f21.1e100.net (74.125.236.149): icmp_req=2 ttl=56 time=56.9 ms
64 bytes from bom03s02-in-f21.1e100.net (74.125.236.149): icmp_req=3 ttl=56 time=56.7 ms
4

--- gmail.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 56.741/60.122/66.709/4.662 ms

Figure.1.13 Adding the default gateway

d. Use your browser and connect to gmail.com (or any other web-site). It should work fine.

Analyse an internal network using Zenmap/nmap:

Nmap (Network Mapper) is a security scanner used to discover hosts and services on a
computer network, thus creating a "map" of the network. To accomplish its goal, Nmap sends
specially crafted packets to the target host and then analyzes the responses.

The software provides a number of features for probing computer networks, including host
discovery and service and operating system detection. These features are extensible by scripts that
provide more advanced service detection,vulnerability detection, and other features. Nmap is also
capable of adapting to network conditions including latency and congestion during a scan.

Zenmap is the official Nmap Security Scanner GUI. It is a multi-platform (Linux, Windows, Mac

17

OS X, BSD, etc.) free and open source application which aims to make Nmap easy for beginners to use
while providing advanced features for experienced Nmap users. Frequently used scans can be saved
as profiles to make them easy to run repeatedly. A command creator allows interactive creation of
Nmap command lines. Scan results can be saved and viewed later. Saved scan results can be
compared with one another to see how they differ. The results of recent scans are stored in a
searchable database. The topology view in the Zenmap uses many symbols and color conventions.

Each regular host in the network is represented by a little circle. The color and size of the circle is
determined by the number of open ports on the host. The more open ports, the larger the circle. A
white circle represents an intermediate host in a network path that was not port scanned. If a host
has fewer than three open ports, it will be green; between three and six open ports, yellow; more
than six open ports, red.

If a host is a router, switch, or wireless access point, it is drawn with a square rather than a circle.

Network distance is shown as concentric gray rings. Each additional ring signifies one more network
hop from the center host.

BOE @0eo

Connections between hosts are shown with colored lines. Primary traceroute connections are
shown with blue lines. Alternate paths (paths between two hosts where a different path already
exists) are drawn in orange. Which path is primary and which paths are alternates is arbitrary and
controlled by the order in which paths were recorded. The thickness of a line is proportional to its
round-trip time; hosts with a higher RTT have a thicker line. Hosts with no traceroute information
are clustered around localhost, connected with a dashed black line.

Tool used: Zenmap

Experiment 2:

1. Port Scanning: Performs a port-scan to check for open ports on the specified IP address range
Open zenmap and give the following details.
Target: 172.16.5.0/27
Command: nmap172.16.5.0/27

Click “Scan” button on the top right corner.

200 zZenmap

Scan Tools Profile Help

Target: |172.16.5.0/27 3] Profile: v | |scan
Command: |nmap 172.16.5.0227
Hosts .. Semvices | NmapOutput Ports/Hosts Topology Host Details Scans
os Host nmap 172.16.5.0/27 v Details
- 172.16.5.127
® (172165126 Starting Nmap 5.00 (http://nmap.org) at 2614-03-13 89:50 IST
All 1000 scanned ports on 172.16.5.1 are closed
- 172.16.5.125
- 172.16.5.124 Interesting ports on 172.16.5.4:
™ 172.16.5.123 Not _shown: 999 closed ports
PORT STATE SERVICE
L 172.16.5.122 1521/tcp open oracle
. 172.16.5.121
Interesting ports on 172.16.5.5:
» 172.163:120 Not_shown: 987 closed ports
. 172.16.5.208 PORT STATE SERVICE
w 172.16.5.129 135/tcp open msrpc
139/tcp open netbios-ssn
w 112105128 445/tcp open microsoft-ds
L 172.16.5.76 554/tcp open rtsp
w 172.16.5.77 2869/tcp open unknown
; 5357/tcp open unknown
. M2105:74 10243/tcp open unknown
- 172.16.5.75 49152/tcp open unknown
w 172.165.72 49153/tcp open unknown
2 49154/tcp open unknown
w 172165.73 49155/tcp open unknown
- 172.16.5.70 49156/tcp open unknown N
™ 172.16.5.71 49159/tcp open unknown
L4 172.165.78 Interesting ports on 172.16.5.7:
- 172.16.5.79 Not_shown: 999 closed ports
™ 172.16.5.211 PORT STATE SERVICE
1521/tcp open oracle
" 172.16.5.210
L 172.16.5.209 Interesting ports on 172.16.5.8:
Not _shown: 999 closed ports
. 172:10.5.29 PORT STATE SERVICE
® 172165212 + | 1521/tco oven oracle

18

Figure 2.1: port scan
a) Can you identify what ports are open on your neighbors’ system?

The below figure shows the network topology for the above scan (Click on the Topology tab).

Q17543345285 5.10

@1721659 ; @172.165.13

‘172.16‘:5 5"-_ » ,.172-16.5.4
e WA S @2165
@122.16527 " i
""""" il - @)172.16.5.12

"*kma[host

.172'1‘6 523 ~@172.16.5.11

Qi 16, 528. SV N T @172165.00
@ 172. 16.5. 31 LN @17216505
L @172.16.5.17

O 17365 3216524

Figure 2.2: Port scan Topology
a) What is your observation from the above topology?

2. Ping scan: Performs a Ping scan for the specified IP range. It can be used to figure out which
machines are up and are responding to pings.
Give the following details in zenmap:
Target: 172.16.5.0/24
Command: choose the ping scan from the profile dropdown
Click “Scan” button on the top right corner.

200 zenmap

Scan Tools

Target: [172.16.5.0/24) gl Profile: [ping scan v |scan|

Command: |nmap -sP -PE -PA21,23,80,3389 172.16.5.0/24
. Hosts | Semices | NmapOutput Ports/Hosts Topology Host Details Scans
7] 172.16.5.127
] 172.16.5.126 Starting Nmap 5.60 (http://nmap.org) at 2014-83-13 69:26 IST
Host 172.16.5.1 is up (0.00058s latency).
» 172.16.5.125 Host 172.16.5.4 is up (6.00028s latency).
U 172.16.5.124 Host 172.16.5.5 is up (0.00046s latency).
- 172.16.5.123 Host 172.16.5.7 is up (0.00027s latency).
Host 172.16.5.8 is up (0.00026s latency).
- 172.16.5.122 Host 172.16.5.9 is up (©.00026s latency).
- 172.16.5.121 Host 172.16.5.10 is up (0.00025s latency).
Host 172.16.5.11 is up (0.00024s latency).
» 2105020 Host 172.16.5.12 is up (0.00023s latency).
- 172.16.5.208 Host 172.16.5.13 is up (0.00025s latency).
- 172.16.5.129 Host 172.16.5.15 is up (0.00024s latency).
Host 172.16.5.17 is up (0.00026s latency).
- 218310 Host 172.16.5.18 is up (0.00025s latency).
- 172.16.5.76 Host 172.16.5.19 is up (0.00024s latency).
i 172.16.5.77 Host 172.16.5.21 is up (0.00025s latency).
Host 172.16.5.22 is up (6.00024s latency).
= Saain e Host 172.16.5.24 is up (0.00028s latency).
L 172.16.5.75 Host 172.16.5.27 is up (0.00024s latency).
™ 172.16.5.72 Host 172.16.5.28 is up (6.60023s latency). N
et — Host 172.16.5.38 is up (0.00024s latency).
R Host 172.16.5.31 is up (0.00024s latency).
] 172.16.5.70 Host 172.16.5.33 is up (0.00020s latency).
w 172.16.5.71 Host 172.16.5.34 is up (0.00018s latency).
Host 172.16.5.35 is up (6.00029s latency).
. 172.16.5.78 Host 172.16.5.36 is up (0.80025s latency).
oo 172.16.5.79 Host 172.16.5.37 is up (0.00021s latency).
™ 172.16.5.211 Host 172.16.5.38 is up (0.00020s latency).
Host 172.16.5.39 is up (0.00028s latency)
- 172.16.5.210 Host 172.16.5.48 is up (0.00024s latency).
] 172.16.5.209 Host 172.16.5.42 is up (0.00024s latency).
Host 172.16.5.43 is up (0.00024s latency).
by i Host 172.16.5.44 is up (0.00028s latency).
- 172.16.5.212 v Host 172.16.5.45 is uo (0.00025s latencv).

19

Figure 2.3: Ping scan
3. Traceroute scan: Performs traceroute operation for specified IP addresses
(experiment with external IP’s - say 173.194.36.16/28)
Give the following details in zenmap:
Target: 172.16.5.0/24
Command: choose the Quick traceroute from the profile dropdown
Click “Scan” button on the top right corner.

2 ©@ zenmap

s Profile Helg
Target: |172.16.5.0/27 W Profile: |Quick traceroute E m
Command: |nmap -sP -PE -PS22,25,80 -PA21,23,80,3389 -PU -PO —traceroute 172.16.5.0/27
W Nmap Output Ports / Hosts Topology Host Details Scans
os wox IR 2 00D Beal
- 172.16.5.10
™ 172.16.5.11 Starting Nmap 5.00 (http://nmap.org) at 2014-63-13 10:06 IST
Host 172.16.5.1 is up (0.00076s latency).
- 172.16.5.12
- 172.16.5.1 TRACEROUTE (using proto 1/icmp)
- 172.16.5.21 HOP RTT ADDRESS
1 0.26 172.16.5.1
- 172.16.5.7
1) 172.16.5.4 Host 172.16.5.4 is up (0.00023s latency).
», 272:26.5.5 TRACEROUTE (using proto 1/icmp)
- 172.16.5.18 HOP RTT ADDRESS
. 172.16.5.19 1 ©.26 172.16.2.1
™ 172.16.5.8 2 ©.22 172.16.5.4
- 172.16.5.9 Host 172.16.5.5 is up (0.00039s latency).
= i TRACEROUTE (to 1)
using proto 1/icmp
- Rt o HOP RTT ADDRESS N
- 172.16.5.28 1 1.0 172.16.2.1
™ 172.16.5.13 2 ©.29 172.16.5.5
- 172.16.5.31 Host 172.16.5.7 is up (0.00026s latency).
- 172.16.5.30
- 172.16.5.24 TRACEROUTE (using proto 1/icmp)
HOP RTT ADDRESS
- 37216517 1 6.34 172.16.2.1
- 172.16.5.15 2 0.21 172.16.5.7

Host 172.16.5.8 is up (0.00026s latency).
TRACEROUTE (using proto 1/icmp)
HOP RTT ADDRESS

1 ©.40 172.16.2.1
2 ©.21 172.16.5.8

Figure 2.4: Quick Traceroute

172.16(_2172.16.5.12

172.16.5.8 172.16.5.11
172.16.5.10
172.16.5)7
172.16.5.15
0,2

172.16.5.4
0.21

; D172.16.5.1

ocalhost
172.16.5.17
172.16.5.24
172.16.5.9 172.16.5.30
172.16.5.27 172.16.5.31
172.16.5.13
172.16@%275 16528

Figure 2.5: Quick Traceroute Topology

4. Intense Scan: Enables OS detection, os version, script scanning and traceroute. This is

20

considered as an “intrusive scan”. Give the following details in zenmap:
Target: 172.16.5.0/24

Command: choose the intense scan from the profile dropdown Click
“Scan” button on the top right corner.

20 zenmap

Scan Tools Profile Help
Target: |172.16.5.0/27 bn) Profile: [intense scan v/ |scan
Command: |nmap -T4 -A -v -PE -P522,25,80 -PA21,23,80,3389 172.16.5.027
Hosts i Services Nmap Output Ports / Hosts Topology Host Details Scans
os Host nmap -T4 -A -v -PE -PS22,25,80 -PA21,23,80,3389 172.16.5.0/27 B Details
- 172.16.5.10
] 172.16.5.11 Starting Nmap 5.60 (http://nmap.org) at 2014-03-13 10:25 IST
NSE: Loaded 30 scripts for scanning.
- 172.16.5.12 Initiating Ping Scan at 10:25
- 172.16.5.1 Scanning 32 hosts [8 ports/host]
w 172.16.5.21 Completed Ping Scan at 10:25, 1.54s elapsed (32 total hosts)
Initiating Parallel DNS resolution of 32 hosts. at 10:25
. 17226.5 Completed Parallel DNS resolution of 32 hosts. at 10:25, 2.72s elapsed
- 172.16.5.4 Initiating SYN Stealth Scan at 10:25
pe Scanning 21 hosts [1000 ports/host]
72.16.5
p Gy Discovered open port 445/tcp on 172.16.5.5 I
- 17216.5.18 Discovered open port 554/tcp on 172.16.5.5
] 172.16.5.19 Discovered open port 135/tcp on 172.16.5.5
Discovered open port 139/tcp on 172.16.5.5
- 2721056 Discovered open port 49153/tcp on 172.16.5.5
- 172.165.9 Discovered open port 1521/tcp on 172.16.5.7
w 172.16.5.27 Discovered open port 1521/tcp on 172.16.5.8
Discovered open port 1521/tcp on 172.16.5.9
» 172.16.3.22 Discovered open port 1521/tcp on 172.16.5.21
w 172.16.5.28 Discovered open port 1521/tcp on 172.16.5.22
- 172.16.5.13 Elscuvcreg open puré i;;;/t(p on i;g.:z.;,i;
iscovered open por /tcp on .16.5.
® [irassa1 Discovered open port 1521/tcp on 172.16.5.27
- 172.16.5.30 Discovered open port 1521/tcp on 172.16.5.4
™ 172.16.5.24 Discovered open port 1521/tcp on 172.16.5.11
Discovered open port 1521/tcp on 172.16.5.12
- 172.16.5.17 Discovered open port 1521/tcp on 172.16.5.13
- 172.16.5.15 Discovered open port 1521/tcp on 172.16.5.15

Discovered open port 1521/tcp on 172.16.5.19
Discovered open port 1521/tcp on 172.16.5.28
Discovered open port 1521/tcp on 172.16.5.30
Discovered open port 1521/tcp on 172.16.5.31
Discovered open port 1521/tcp on 172.16.5.17
Discovered open port 1521/tcp on 172.16.5.18
Discovered open port 49155/tcp on 172.16.5.5

Ricrnuarad nnan nart AQ18A/trn an 173 18 & &

Figure 2.6: Intense scan

172.16.5.8

9172.16.5.19

/,@ 172.16.5.18

@172.165.22
\\\\\\\\\

172.16.5.5

\0172 16.5.4

\\0172 16.5.7

172 16.5.21

b &
/'/
@ 1721652

/
e
/
/

‘172.16.5.17

.5.1

Q17216512

C 172.16.5.11
172.16(}$72.16.5.10

Figure 2.7: Intense scan Topology
Basic rule setting in iptables :- iptables is a user space application program that allows a system

administrator to configure the tables provided by the Linux kernel firewall (implemented as
different Netfilter modules) and the chains and rules it stores. Different kernel modules and
programs are currently used for different protocols; iptables applies to IPv4, ip6tables to IPv6,
arptables to ARP, and ebtables to Ethernet frames. iptables requires elevatedprivileges to
operate and must be executed by user root, otherwise it fails to function. On most Linux
systems, iptables is installed as /usr/sbin/iptables and documented in its man pages which can
be opened using man iptables when installed. It may also be found in /sbin/iptables, but since
iptables is more like a service rather than an "essential binary", the preferred location remains

21

Jusr/sbin.
Tool used:iptables
Experiment 3:
1. To display firewall rule-set using iptables

a. Use “-L” option in “iptables” command. By default, “filter” table is displayed.

root@gokul-VirtualBox:~# i1ptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Figure 3.1 Listing firewall rules

b. Explicitly the table can be specified using “-t” option

root@gokul-virtualBox:~# iptables -L -t filter
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Figure 3.2 Listing firewall rules (using filter table)

2. To block gmail server, so that, your browser cannot open gmail.com.
a. Do anslookup to find the IP addresses of gmail.com

root@gokul-vVirtualBox:~# nslookup gmail.com
Server: 12720.1.1
Address: 127.0.1.1#53

Non-authoritative answer:

Name: gmail.com
Address: 173.194.36.21
Name: gmail.com
Address: 173.194.36.22

Figure 3.3 nslookup for gmail.com

There are two IP addresses associated with gmail.com. Block both the IP addresses.

22

b. Add a firewall rule for outgoing traffic. All TCP packets are not allowed to reach
internet.

root@qokul-VirtualBox:~# iptables -I QUTPUT 1 -t filter -d 173.194.36.21 -p tcp -j REJECT

Figure 3.4 Adding a firewall rule

root@gokul-virtualBox:~# iptables -L -t filter -n
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
REJECT tcp -- 0.0.0.0/0 173.194.36.21 reject-with icmp-port-unreachable

Figure 3.5 iptables showing added firewall rule

c. Similarly, add a firewall rule for rest of the IP addresses (Gmail server).

d. Open the browser and connect to gmail.com. What is the observation?
e. Do apingto one of the IP addresses of Gmail.com. What is the observation?
f. Delete the above rules using “-D” option.

root@gokul-VirtualBox:~# iptables -D OUTPUT 1 -t filter

Figure 3.6 Delete a firewall rule
The above command will remove the first rule.
In a similar fashion, remove all the rules in the OUTPUT chain.
There is an option “-F” (flush) to remove rule-sets (“iptables -F” will remove all the rules).

3. To block all the outgoing packets to gmail.com

a. Add the firewall rule specified in the figure below.
root@gokul-VirtualBox:~# iptables -I OUTPUT 1 -t filter -d 173.194.36.21 -j REJECT
root@gokul-virtualBox:~# iptables -L -t filter -n

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
REJECT all -- 0.0.0.0/0 173.194.36.21 reject-with icmp-port-unreachable

Figure 3.7 Adding a firewall rule

b. Similarly, add rules for other IP addresses associated with gmail.com.
c. Do a ping for one of the IP addresses.

23

root@gokul-virtualBox:~# ping 173.194.36.21 -c 5
173.194.36.21 (173.194.36.21) 56(84) bytes of data.
10.0.2.15 icmp_seq=1 Destination Port Unreachable

.15 icmp_seq=1 Destination Port Unreachable

10.0.2
10.0.2.15 icmp_seq=1 Destination Port Unreachable
10.0.2.15 icmp_seq=1 Destination Port Unreachable
10.0.2.15 icmp_seq=1 Destination Port Unreachable

.194.36.21 ping statistics ---
® packets transmitted, © received, +5 errors

Figure 3.8 Testing with ping command
d. Delete the above rules using “-D” option.
root@gokul-VirtualBox:~# iptables -D OUTPUT 1 -t filter

Figure 3.9 Delete the firewall rule

The above command will remove the first rule.
In a similar fashion, remove all the rules in the OUTPUT chain.

24

Experiment-3
Aim: To learn about queue management techniques, and global routing in ns3
Study the performance of DropTail and RED queue management techniques:

Tail Drop, or Drop Tail, is a very simple queue management algorithm used by Internet routers, e.g., in the
network schedulers, and network switches to decide when to drop packets. In contrast to the more complex
algorithms like RED and WRED, in Tail Drop the traffic is not differentiated. Each packet is treated
identically. With tail drop, when the queue is filled to its maximum capacity, the newly arriving packets are
dropped until the queue has enough room to accept incoming traffic.

The name arises from the effect of the policy on incoming datagrams. Once a queue has been filled, the
router begins discarding all additional datagrams, thus dropping the tail of the sequence of datagrams.
The loss of datagrams causes the TCP sender to enter slow start, which reduces throughput in that TCP
session until the sender begins to receive acknowledgements again and increases its congestion window. A
more severe problem occurs when datagrams from multiple TCP connections are dropped, causing global
synchronization; i.e., all the involved TCP senders enter slow start. This happens because, instead of
discarding many segments from one connection, the router would tend to discard one segment from
each connection.

Random early detection (RED), also known as random early discard or random early drop is an queueing
discipline for a network scheduler suited for congestion avoidance. RED monitors the average queue size

and drops (or marks when used in conjunction with ECN) packets based on statistical probabilities.
If the buffer is almost empty, all incoming packets are accepted. Asthe queue grows, the probability for
dropping an incoming packet grows too. When the buffer is full, the probability has reached 1 and all

incoming packets are dropped.

Experiment 1: Compare the performance of DropTail and RED queue techniques
1. Copy Red_vs_nlred.cc file from examples directory and put all .ccfiles into the scratch folder in ns3. 2. The
Red_vs_nlred.cc code simulates the following network topology

< = = python (on CnLabvm1)
=
P
-
= Y = = = - - ~1
=] == i |
Zoom: 1.640 = Speed: 1.000 = Time: 0.000000 s Snapshot Simulate (F3)

> Advanced

Figure.l. Topology
3. The bandwidth and delay of the bottleneck link is 1 Mbps and 50 ms. The data rate at the source

25

nodes are higher than 1 Mbps. Since all traffic passes through a single route, there is a congestion in the
network. This leads to drop in packets.
4. Copy the file to ns3_home_folder/scratch/ directory.
5. Open a terminal and navigate to ns3_home_folder.
6. Compile ns3 programs using the below command. ./waf
7. Run red_vs_nlred executable using the following command. ./waf--run Red_vs_nlred--vis
8. Simulator window will be opened on running the above command. Click “Simulate” button.
9. Wait for the simulation to complete. Once the simulation is completed, close the window.
10.The terminal will show the total no. of bytes received successfully at different destinations.
11.Create a new copy of droptail_vs_red.cc and change the queue to RED.
12.Run the experiment from step.4. to step.10.
13.Compare and contrast DropTail and RED queue techniques.

a. What is the total no. of bytes received in Droptail queue technique?

b. What is the total no. of bytes received in RED queue technique?

c. What is the inference?

Experiment.2: Performance of RED for different link bandwidths and queue lengths

Incoming RANDOM EARLY DETECTION

packet

Avr = average queue length
MaxThres = max queue length threshold
MinThres = min queue length threshold

]

N
compute average
queue length

Avr=MinThres ;MinThres<Avr<MaxThres Avr=MaxThres
~ ‘l’ ~
calculate packet
dropping probability]

else i high probability
~

| —
-

Enqueue Drop

packet packet

¥

O

For a given network, the following parameters play a critical role in network congestion.

Traffic characteristics in source/destination hosts

1. Packet priority = Low, Medium, High

2. Traffic Type: Data, Voice, Video

3. Application Data Size: Distribution (Constant, Exponential, etc.), Application Data Size (1472 bytes, 512
bytes, etc.)

4. Inter Arrival Time: Distribution (Constant, Exponential, etc.), Mean Inter Arrival Time (micro seconds)

26

Link Properties

1. Distance (km)

2. Bit Error Rate (BER)

3. Physical Medium (CAT510 Mbps, E2, etc.)

Router properties:

1. Buffer size (KB): 8, 16, 32, etc.
2. Scheduling Type: FIFO, Priority
3. Queue Technique: DropTail, RED

Steps in the experiment:
1. The code simulates the following network topology.
python (on CnLabvm

60y e .
gl =] 0|
Zoom: |2.256 l:l Speed: [1.000 :] Time: 0.000000 s Snapshot Simulate (F3)
» Advanced

Figure. 2. Topology

2. The bandwidth and delay of the bottleneck link is 10 Mbps and 10 ms. The traffic at source and destinations
are 8 Mbps, 5 Mbps, and 7 Mbps. Since, there are many sources passing through a single route (as shown in
the above figure), there is a huge drop in packets.
3. Copy the file to ns3_home_folder/scratch/ directory.
4. Open a terminal and navigate to ns3_home_folder.
5. Compile ns3 programs using the below command. ./waf
6. Run redqueue executable using the following command ./waf run RedQueueStats vis
7. Simulator window will be opened on running the above command. Click “Simulate” button.
8. Wait for the simulation to complete. Once the simulation is completed, close the window.
9. The terminal will show the total no. of dropped packets. The following information is displayed.

a. Packets drop after crossing avg. threshold level (High prob.)

b. Packets drop after crossing max. threshold level (QueueAvg>MaxQueue)

27

c. Packets drop after crossing the queue length (Queue is full)
10.Change the bandwidth of the bottleneck link to 15 Mbps. Compile the code and run the experiment.

a. What is your observation for step.9
11.Change the bandwidth of the bottleneck link to 20 Mbps. Compile the code and run the experiment.

a. What is your observation for step.9
12.From the steps 9, 10, and 11

a. What is the inference?

b. What is the minimum and maximum threshold value?
13.Change the bandwidth of the bottleneck link to 2 Mbps. Default values of MinThreshold ,MaxThreshold and
Queuelimit are 5, 15 and 25. Change MinThreshold less than 5 and MaxThreshold less than 15. Compile the
code and run the experiment.

a. What is your observation for step.9

Analyse the effect of broken links on routing table:

Routing is the process of selecting best paths in a network. In the past, the term routing was also used to
mean forwarding network traffic among networks. However, this latter function is much better described as
simply forwarding. Routing is performed for many kinds of networks, including the telephone network (circuit
switching), electronic data networks (such as the Internet), and transportation networks.

In packet switching networks, routing directs packet forwarding (the transit of logically addressed network
packets from their source toward their ultimate destination) through intermediate nodes. Intermediate nodes
are typically network hardware devices such as routers, bridges, gateways, firewalls, or switches. General
purpose computers can also forward packets and perform routing, though they are not specialized hardware
and may suffer from limited performance. The routing process usually directs forwarding on the basis of
routing tables which maintain a record of the routes to various network destinations. Thus, constructing
routing tables, which are held in the router's memory, is very important for efficient routing

When applying link state algorithms, a graphical map of the network is the fundamental data used for each
node. To produce its map, each node floods the entire network with information about the other nodes it can
connect to. Each node then independently assembles this information into a map. Using this map, each router
independently determines the least cost path from itself to every other node using a standard shortest paths
algorithm such as Dijkstra's algorithm.

Experiment.3: Dynamic Global Routing

We will examine global routing in a mixed environment with Point to Point links and CSMA/CD channel.
Copy the dynamic_global_routing.cc file from examples into scratch folder.

The following topology is created:

28

1. Run the simulation from ns3 home folder
a. ./waf
b. ./waf run globalrouting (use ‘vis’ to enable visualization)
2. Data is transferred from n1 to n6. Identify n1 and n6 correctly from the visualization.
3. At presimulation time, global routes configured. Look for the following line in the code: aa
a.lpv4GlobalRoutingHelper::PopulateRoutingTables ();
4. The shortest path from n1 to n6 is via the direct pointtopoint link. This will be the default choice.
5. At time 1s, CBR traffic flow from nl to n6 is started
6. At time 2s,the nl pointtopoint interface goes down. Through what path will the packets get diverted?

a. Under what other circumstances (apart from the interface going down) could the path of the packets
dynamically change?
7. At time 4s, the n1/n6 interface is reenabled to up. Now what will be the path taken by the packets between
nln6?
8. At time 6s, the n6-n1 pointtopoint Ipv4 interface is set to down (note, this keeps the pointtopoint link "up"
from nl's perspective). Observe the change of path of the packets (NOTE: observe the visualization as well as
the corresponding pcap files)
9. At time 8s, the interface comes up. The older path is restored.
10.At time 10s, the first flow is stopped.
11.At time 11s, a new flow started, but to n6's other IP address (the one on the n1/n6 p2p link)
12.At time 12s, the nl interface down between nl and n6 is put down. Packets will be diverted to the
alternate path
13.At time 14s, the n1/n6 interface is reenabled. This will change routing back to n1n6 since the interface up
notification will cause a new local interface route, at higher priority than global routing
14.At time 20s, the second flow stopped and simulation ends.

29

Experiment-4

Aim: To learn about broadcasting, multicasting, and bridging in a Local AreaNetwork using
ns-3.

First remove old .cc files from your scratch folder. Copy first.cc and second.cc from

examples->Tutorial into scratch folder.

Carrier Sense Multiple Access (CSMA)

Carrier Sense Multiple Access/Collision Detect (CSMA/CD) is the protocol for carrier transmission access in
Ethernet networks. On Ethernet, any device can try to send a frame at any time. Each device senses whether
the line is idle and therefore available to be used. If it is, the device begins to transmit its first frame. If another
device has tried to send at the same time, a collision is said to occur and the frames are discarded. Each device
then waits a random amount of time and retries until successful in getting its transmission sent.

Experiment 1: One Point-to-Point link with one CSMA channel with four nodes

Figure.l. Default LAN Topology
In p oint2point-csma.cc file you have the topology as given above. This program builds a one point-to-point
channel from n 0 to one LAN segment over csma channel. But when you run point2point-csma. cc program,
ns3does not visualize it in the same way. The visualization by ns-3looks like the figure below.

e 5 C i
=100 A A A =}
[| I Ji |
Zoom: |1.293 I:I Speed: 11.000 |:| Time: 0.000000 s Snapshot Simulate (F3)

¢ Advanced

Figure.2. Simulation of LAN Topology

In the figure above, the dotted circle in the center is the CSMA channel. The top
most node is nO.

Pcap captures for the simulation are enabled by default.

30

1. Do you see ARP communication in the Point-to-Point link?
2. What about the CSMA LAN?
Write down your observations.

For the experiment above, extend it to create the topology given below:

Figure.3. Topology2
Experiment 2: |IP broadcasting over two CSMA channels
Open the IpBroadcastCSMA.cc file. It uses the following topology:

Figure.4. Default Broadcast Topology

In the figure below, n0 is the node in the middle of the two CSMA channels. n0O originates UDP broadcast to
specified LAN segment. In the IpBroadcastCSMA.cc file, line 101 has OnOffHelper which takes the IP address as
a parameter. The code given to you has 1 0.1.3.255 as the IP address, which is the broadcast IP of the CSMA
channel at the bottom in the given figure. If you want n0O to broadcast to both CSMA channels, comment out

line 101 and uncomment line 103. This will make the broadcast IP as 255.255.255.255 .

i > J

=3 e =1
Zoom: [2651 [3] =peea: [zooo [E Time: 0000000 = Snapshot Simutote (£33

» Advances

Figure.5. Simulation of Broadcast Topology
Write down your observations.
Experiment 3 : I[P multicasting over two CSMA channels
Open IpMulticastCSMA.cc file. It uses the following topology.

31

Figure.6. Default Multicast Topology

As given in line 101 of the code, n0 is the multicast source
Ipv4Address multicastSource(“10.1.1.1”)
This topology is similar to the previous one. n2is the node in the middle of the two CSMA channels.

SO S python (on CalabVm1)

o |
L ™. @
& K
- o_ o
@

A A A F—
< —3 Le)
Zoom: |1.165 Z] Speod: |1.000 [Z Time: 0.000000 s Snoapshot Simulate {F3}

* Advanced

Figure.7. Simulation of Multicast Topology

Change the multicast source node to n3 . Send multicast data to nodes n0, n1,and n4 .
Write down your observations.

Experiment 4: Bridging over CSMA and with one intermediate router
Open BridgingOneHop.cc file. It uses the following topology.

32

Figure.8. Default Bridging Network

In the figure below, n2 is the router node in the middle. Application data is transmitted from n0 to n1 and
from n3 to n0. The Data rate for nO>n1 transmission is 500Kb/s (see line 165 of code), and Data rate for n3>n0
transmission is 100Kb/s (see line 181 of code).
In the figure below, n2 is the router node in the middle. Application data is transmitted from n0 to n1 and
from n3 to n0. The Data rate for nO>n1 transmission is 500Kb/s (see line 165 of code), and Data rate for n3>n0
transmission is 100Kb/s (see line 181 of code)

) python (on Cniabwmi)

= = =__ =i
<1 o — w1}
Zoom: [1.165 [5] sSpeed: [1.000 [5] Time: 12.500000 s Snapshot [Simulate (F3)

r Advanced

Figure.9. Simulation of Bridging Network
This shows two broadcast domains, each interconnected by a bridge with a router nodeinterconnecting the
Layer2 broadcast domains.

While running the simulation, observe the ‘interface statistics’ (right click on the node) for n0 and the bridging

node n5. Can you observe ‘IPv4 Routing Table’ for the bridging nodes (n5 and n6)?
Write down your observations.

33

Show IPv4 Routing Table
Show Inmterface Statistics

Show Last Packets _]
O
o 5¢ 100 150 e
= — e S|
Zoom: |x.165 I:] Specd:]1.000 [:[Time: 0.000000 = Snapshat Simuliate {(F3)

Figure.10. Observing Node statistics

At n5, we can observe the following statistics:
Statistics for node 5

Interface Tx Packets | Tx Bytes |Tx pkt/1s [Tx bit/1s | Rx Packets |Rx Bytes |Rx pkt/1s |Rx bit/1s
(interface 0) 2 128 0.0 0.0 219 121214 0.0 0.0
(interface 1) 219 121214 0.0 0.0 1101 612876 0.0 0.0

(interface 2) 1100 612812 0.0 0.0 1 64 0.0 0.0

(interface 3) O 4] 0.0 0.0 0 0 0.0 0.0

Figure.11. Statistics for node 5

The Received bytes at interface 1 are maximum. Can you correctly identify interface 1 of node 5 on your
visualization? Can you identify its interface 2 as well? Why does interface 3 has no Transmitted or Received
bytes?

Write down your observations.

34

Experiment-5
Aim: To learn about Wi-fi and Mobile Ad-hoc topologies with ns-3.
IEEE 802.11 wireless LANs use a media access control protocol called Carrier Sense Multiple Access

with Collision Avoidance (CSMA/CA).

Wi-Fi systems are half duplex shared media configurations, where all stations transmit and receive
on the same radio channel. The fundamental problem this creates in a radio system is that a station cannot
hear while it is sending, and hence it is impossible to detect a collision. Because of this, the developers of
the 802.11 specifications came up with a collision avoidance mechanism called the Distributed Control
Function (DCF).

According to DCF, a Wi-Fi station will transmit only if it thinks the channel is clear. All transmissions
are acknowledged, so if a station does not receive an acknowledgement, it assumes a collision occurred and
retries after a random waiting interval.

Experiment 1:
1. third.cc file in examples folder creates the following topology:

Default Network Topology

Wifi 10.1.3.0

LAN 10.1.2.0

In ns-3, the visualization will appear similar to the figure below:
/.
.\.\ -/
0/ -

35

You may increase the number of Wi-fi devices by specifying it at run-time in the following manner:
.Jwaf --run 'wifi-example --nWifi=10" --vis
(18 is the hard-coded upper limit)
You may observe the pcap files generated at different nodes. Packet captures are enabled in the line

numbers 172-174 of the code:
pointToPoint.EnablePcapAll ("wifi-p2p");
phy.EnablePcap ("wifi-ap", apDevices.Get (0));
csma.EnablePcap ("wifi-csma", csmaDevices.Get (0), true);

Since no data applications are enabled, you do not see any data in the pcap files apart from broadcast
messages by the Wi-fi A.P. In pcap files generated at the A.P., can you observe the beacon frames and
acknowledgements?

2. Create a UDP Echo Client-Server application for the above topology. The last node on the CSMA LAN
should be your Echo Server. Configure any of the Wi-fi devices as your Client.

Comment out line number 152-166 to implement the above. Observe UDP

serverport number and other client attributes.

After running the Echo Client-Server application, observe the fresh pcap files generated.

Experiment 2: Extending the previous topology
Extend the above topology so as to create a Wi-fi Access Point on one of the CSMA LAN nodes. Connect
three Wi-fi nodes to this Access Point as shown in the figure below:

e
*“Yos

Some hints to help you extend the topology:
e Do notinstall the Internet stack twice on any node.
e Remember to give your new Wi-fi Access Point a SSID which is different from the previous one.
e The Wi-fi devices and their Access Point must be in the same IP subnet.

36

e In order to have your new Wi-fi nodes physically apart from the old nodes, you will need to set
appropriate values for the SetPositionAllocator method of the MobilityHelper class.

3. Further, modify your UDP Echo Server-Client application by configuring the Server as a Wi-fi device on
the new A.P.. (Hint: the present code will not suffice for this implementation because the Wi-fi devices
have no ‘IPv4interface’ associated with them)

4. The final topology will look like the figure below:
5.

8. Observe the fresh pcap files generated. You should be able to see data transfer between the two Wi-fi
devices.

AODV (Ad-hoc On-Demand Distance Vector)

Ad hoc On-Demand Distance Vector (AODV) Routing is a routing protocol for mobile ad hoc networks
(MANETSs) and other wireless ad hoc networks.

The AODV Routing Protocol uses an on-demand approach for finding routes, that is, a route is established
only when it is required by a source node for transmitting data packets. It employs destination sequence
numbers to identify the most recent path. In AODV, the source node and the intermediate nodes store
the next-hop information corresponding to each flow for data packet transmission. In an on-demand
routing protocol, the source node floods the RouteRequest packet in the network when a route is not
available for the desired destination. It may obtain multiple routes to different destinations from a
single RouteRequest. The major difference between AODV and other on-demand routing protocols is that
it uses a destination sequence number (DestSeqgNum) to determine an up-to-date path to the
destination. A node updates its path information only if the DestSegNum of the current packet received
is greater or equal than the last DestSeqNum stored at the node with smaller hopcount.

37

Experiment 3: Understanding the AODV routing protocol for Mobile adhoc networks
The My_aodv.cc file generates a topology of 12 mobile nodes, 4 in each line.

The nodes are separated by a distance ‘step’ specified in the code. The initial value given to ‘step’ is 100m.
The step variable can be varied from 80 to 120. As the ‘step’ size increases, you will observe that
neighboring nodes are not able to communicate to each other directly (the link between then breaks).
Thus the nodes will use AODV routing to figure out alternate routing paths. Observe the

aodv.routes file, which gives the AODV routing table at each node.

ipc3@ipc3-ThinkCentre-A58:~/ns3_cnlab/ns-allinone-3.22/ns-3.22% cat aodv.routes
Node: @ Time: 8s

AODV Routing table

Destination Gateway Interface Flag Expire Hops

10.0.0.2 16.8.8.2 16.8.8.1 up 2.82 1
10.0.0.5 10.0.0.5 10.0.0.1 DOWN 13.00

10.0.0.12 10.0.0.2 10.0.0.1 IN_SEARCH 12.
10.255.255.255 10.255.255.255 10.0.0.1 up 9223372028.
127.0.0.1 127.0.0.1 127.0.0.1 up 9223372028.

Node: 1 Time: B8.00s
AODV Routing table
Destination Gateway Interface Expire
10.0.0.1 10.0.6.1 10.0.08.2 2.02
10.0.0.3 10.0.08.3 10.0.8.2 1.2
.0.0.6 10.0.0.6 10.0.0.2 12.02
.0.6.12 10.0.0.6 10.0.0.2 1z2.02
.255.255.255 10.255.255.255 10.0.0.2 9223372028.
127.0.0.1 127.0.0.1 127.0.06.1 9223372028.

Node: 2 Time: 8.00s

AODV Routing table

Destination Gateway Interface Expire
10.0.06.2 .0.0. 12.82
16.0.8.2 10. 1.01
18.0 -4 o 11.82
10.0.0.7 16.0.0. 12.82
1©.255.255.255 10.0.0. 9223372028.
127.0.0.1 127.0.06.1 9223372028.

Node: 3 Time: B8.00s

AODV Routing table

Destination Gateway Interface Expire
10.0.0.1 10.0.6.3 10.0.0.4 12.04
10.0.0.3 10.0.0.3 10.0.0.4 1z2.04
16.6.06.8 16.0.06.8 10.0.0.4 S.04
10.255.255.255 10.255.255.255 10.0.0.4 9223372028.

References
1. http://www.nsnam.org/http://en.wikipedia.org/wiki/Wi-Fi

38

http://www.nsnam.org/
http://www.nsnam.org/

Ul

m

Xperiment-6

AIM:-To Introduce Socket Programming in TCP and UDP

TCP Socket Programming:
A socket is the mechanism that most popular operating systems provide to give programs access
to the network. It allows messages to be sent and received between applications
(unrelated processes) on different networked machines. The sockets mechanism has
been created to be independent of any specific type of network.
A socket address is the combination of an IP address and a port number, much like one end
of a telephone connection is the combination of a phone number and a particular extension.
Based on this address, internet sockets deliver incoming data packets to the
appropriate process or thread.

An Internet socket is characterized by a unique combination of the following:
1. Local socket address: Local IP address and port number

2. Remote socket address: Only for established TCP sockets. This is necessary since a TCP server
may serve several clients concurrently. The server creates one socket for each client, and

these sockets share the same local socket address from the point of view of the TCP server.

3. Protocol: A transport protocol (e.g., TCP, UDP, raw IP, or others). TCP port 53 and UDP port
53 are consequently different, distinct sockets.

Tools used: gedit, terminal

Experiment 1: Working of a TCP concurrent server

1. Create “tcp_client.c” and “tcp_server.c”.

2. Compile server first (as shown below). gcc -0 server tcp_server.c

3. Similarly, compile the client using the following command. gcc -o client tcp_client.c

4. Run the server using the below command. After running, the server would wait for an
incoming connection (as shown in the Figure.1)

./server

suchetana@suchetana-HP-Pro-3330-MT:~$ cd ../suchetana/Dropbox/Network/Network\ Lab/Lab4_Code/tcp_concurrent/
suchetana@suchetana-HP-Pro-3330-MT:~/Dropbox/Network/Network Lab/Lab4_Code/tcp_concurrent$ gcc -o server tcp_server.c
suchetana@suchetana-HP-Pro-3330-MT:~/Dropbox/Network /Network Lab/Lab4_Code/tcp_concurrent$ gcc -o client tcp_client.c
suchetana@suchetana-HP-Pro-3330-MT:~/Dropbox/Network/Network Lab/Lab4_Code/tcp_concurrent$./server

Server running...waiting for connections.

Figl. Server waiting for connections

On separate terminal window, run the client using

39

.Jclient <server IP or localhost>

suchetana@suchetana-HP-Pro-3330-MT:~/Dropbox/Network/Network Lab/Lab4_Code/tcp_c
oncurrent$./client 127.0.0.1

Fig2. Client waiting for User input

6.Enter a character as input and it will be echoed back by the server (Refer Figure.3)

suchetana@suchetana-HP-Pro-3330-MT:~/Dropbox/Network/Network Lab/Lab4_Code/tcp_c
oncurrent$./client 127.0.0.1

h

String received from the server: h

i

String received from the server: i

Fig3. Client input-output

suchetana@suchetana-HP-Pro-3330-MT:~/Dropbox/Network/Network Lab/Lab4_Code/tcp_concurrent$./server
Server running...waiting for connections.

Received request...

Child created for dealing with client requests

Data received from and resent to the client:h

Data received from and resent to the client:i

Figd. Server output

7.To stop the server and client, click “Ctrl +C” in their respective terminals. (To start the server again, wait for a
couple of seconds).

Experiment 2: Modification of the TCP Client-Server programs

1. Download “tcp_client.c” and “tcp_server.c” from the CMS Website

2. Modify the filenames as “tcp_client_n.c” and “tcp_server_n.c”

3. Modify the program such that the client sends a string as a message to the server. Make sure the
server echoes back the same string. (Hint: use buffer to handle the string exchanges by server-client
and modify read and write functions).

4. Compile server first (as shown below). gcc -o server_ntcp_server_n.c
Similarly, compile the client using the following command. gcc -o client_ntcp_client_n.c
Run the server using the below command.

./server_n
7. The server will start, waiting for a client to connect. On a separate terminal window, run the client

using
./client_n <server IP or localhost>
8. Type “hi | am client!” in the client terminal window. As you see the figure.6, the same message is
echoed back from the server.

project2@project2-0OptiPlex-380:~/Documents/tcp string$ cc tcp client str.c -o tcp client str
liproject2@project2-0OptiPlex-380:~/Documents/tcp string$./tcp client str 172.16.90.4

Mhi im client!

String received from the server: hi im client!

Fig5. Client sending string

project2@project2-0OptiPlex-380:~/Documents/tcp string$ cc tcp server str.c -o tcp server str
project2@project2-0OptiPlex-380:~/Documents/tcp string$./tcp server str

Server running...waiting for connections.

Received request...

Child created for dealing with client requests

Data received from and resent to the client:hi im client!

Figb: Server receiving String

9. To stop the server and client, click “Ctrl +C” in their respective terminals. (To start the server again,
wait for a couple of seconds).

Questions

Answer the following questions based on your understanding of the experiments.
1. Which field in the socket function specifies the type of transport layer protocol (like TCP, UDP, etc.)?

2. What s the IP address and port no. of the server?
3. What is the purpose of bind function?
4

Which of the functions mentioned below are blocking calls?

a. socket
b. connect
c. bind

d. listen
e. accept
f. send

g. recv

h. close

Which function in the client program involved in connection establishment?

Which function in the server program involved in connection establishment?
send and recv functions are analogous to writing to a file and reading from a file. (T/F)
What is a concurrent server?

co N O U

UDP Socket Programming:

A datagram socket is a type of connectionless network socket, which is the sending or receiving point
for packet delivery services. Each packet sent or received on a datagram socket is individually addressed and

routed. Multiple packets sent from one machine to another may arrive in any order and might not arrive at
the receiving computer.

A datagram socket provides a symmetric data exchange interface without requiring connection
establishment. Each message carries the destination address.

Tools used: gedit, terminal

Experiment 3: Working of an UDP Client-Server program

1. Download “udp_client.c” and “udp _server.c” from the CMS Website.

2. The programs are partially complete. Complete the rest of the program, so that, it compiles and runs
successfully (Implement echo server described in Experiment.2.)
Compile server first (as shown below). gcc -o udp_serverudp_server.c

4. Similarly, compile the client using the following command. gcc -o udp_clientudp_client.c
Run the server using the below command.

.Judp_server
6. The server will start, waiting for a client to connect. On a separate terminal window, run the client

using
.Judp_client <server IP or localhost>

7. Enter a character as input and it will be echoed back by the server (Refer Figure.7)

projeth@projeth-OptiPlexv380:»‘Documents/udp simple$ cc udp_client.c -o udp_client
project2@project2-OptiPlex- :~)Documents/udp simple$

project2@project2-OptiPlex- :~/Documents/udp_simples$

project2@project2-OptiPlex- :~/Documents/udp_simple$./udp client 172.16.90.4
Client-gethostname() is OK...

Client-socket() sockfd is OK...

Using port: 4998

sent to server:t
received from Server:t

sent to server:u
received from Server:u

sent to server:d
received from Server:d

—rrer B)

Fig7: Client sending and receiving a character

Y

8. To stop the server and client, click “Ctrl +C” in their respective terminals. (To start the server again,
wait for a couple of seconds).

Experiment 4: Modification of the UDP Client-Server programs

1. Download “udp_client.c” and “udp_server.c” from the CMS Website
2. Modify the filenames as “udp_client_n.c” and “udp_server_n.c”

3. Modify the program such that the client sends a string as a message to the server. Make sure the
server echoes back the same string. (Hint: use buffer to handle the string exchanges by server-client
and modify read and write functions).

4. Compile server first (as shown below). gcc -o udp_server_nudp_server_n.c

Similarly, compile the client using the following command. gcc -o udp_client_nudp_client_n.c

y.}

6. Run the server using the below command.
Judp_server_n
7. The server will start, waiting for a client to connect. On a separate terminal window, run the client
using
.Judp_client_n <server IP or localhost>

8. Type “hello” in the client terminal window. As you see the Figure.8, the same message is echoed back
from the server.

project2@project2-0OptiPlex-380:~/Documents/UDP string$./udp client 172.16.90.4
Client-gethostname() is OK...

Client-socket() sockfd is OK...

Using port: 45678

hello

Client sent to server:hello

String received from the server: hello

Fig8: Client sending and receiving a string

9. To stop the server and client, click “Ctrl +C” in their respective terminals. (To start the server again,
wait for a couple of seconds).

Questions

Answer the following questions based on your understanding of the experiment.
1. Order the sequence of operations in an UDP socket communication.

Client functions Server
functions

Close Close

Socket Socket

Sendto Sendto

Recvfrom Recvfrom
Bind

2. What s the difference between UDP and TCP echo servers?

References
>Unix Manual: http://man7.org/linux/man-pages/man2/socket.2.html

Experiment-7

Aim: Observations of Transmission Control Protocol (TCP) Connection states, Flags
and Flow control.

TCP Connection States:

TCP protocol operations may be divided into three phases. Connections must be properly
established in a multi-step handshake process (connection establishment) before entering the
data transfer phase. After data transmission is completed, the connection termination closes
established virtual circuits and releases all allocated resources.

A TCP connection is managed by an operating system through a programming interface
that represents the local end-point for communications, the Internet socket. During the

CONMNECTISYN (Step 1 of the 3-way-handshake)

mmmmrrreeceeeees B UNUSUE] Event
= client/recerver path (Start) _ B P PR
el
————— = server/sender path LISTENI- h CLOS
: CLOSEl
(Step 2 of the 3-way-handshake)SYN/SYN+ACK LISTEN-
RSTI- SENDISYN
SYN tettesmammEreri st ssraam e rs e S,).. S’YN
RECEIVED |wgc oo SYNSYMHACK (simulranequs apenl ... SENT
Data exchange occurs
ACKS- SYN+ACKACK
_ {Step 3 of the 3-way-handshake)

: CLOSEIFIN

f CLOSEIFIN FIN/ACK
A R | Active CLOSE | [Passive CLOSE | :

=)
: Y FINIACK o : : :
I FINWAITL | CLOSING N CLOSE WAIT !
| FIN+ACKIACK : | : i

: : |

| !] 1 | \
| 4 i |
: ACK- | Aok . CLOSEIFIN |
| 2] 1 | :
: i ? ro i
: ¥ Vo Y :
: T IME WAIT D LAST ACK :
| FINIACK : : :
: Timeout | | ACH :
L | I

(6o back to start) [[NICHOSEDIN

Fig.1: TCP State Diagram

lifetime of a TCP connection the local end-point undergoes a series of state changes:

Tools used: Wireshark, netstat.

N

Experiment 1: Observation of TCP connection states
1. Download “tcp_client.c” and “tcp_server.c” from the CMS Website

2. Compile server first (as shown below).
gcc -0 tcp_servertcp_server.c

3. Similarly, compile the client using the following command.

gcc -0 tep_clienttcp_client.c

4. Run the server using the below command.

.Jtcp_server

5. The server will start, waiting for a client to connect. On a separate terminal window, run the client
using
.Jtcp_client<IP address of your neighbour>

6. Enter a character as input and it will be echoed back by the server. Use netstat to check
the TCP connection state in client PC and server PC separately.
a. What is the connection state in the client machine?

b. What is the connection state in the server machine?

7. Stop client and server programs. Immediately, start the server again.

a. What is the observation?
8. Connection Establishment states (LISTEN, SYN_SENT, SYN_RCVD)

a. LISTEN state
Start the server in your neighbor PC.

i. What is the TCP connection state (observed using netstat)?

L = L = =u r A - ol =~=/uUu = J D
project2@project2-0OptiPlex-380:~% sudo netstat -actn |grep 7777
[sudo] password for project2:
tcp [¢]
tep
tep

LISTEN
LISTEN
LISTEN
LISTEN
LISTEN
LISTEN
LISTEN
LISTEN
LISTEN

(¢]

0
tecp [¢]
tcp [¢]
tcp [¢]
tcp [¢]
tcp [¢]
tc 0

coocooeoeoco
coocooeoeoco
cococoooo
cococoooo
cocooooom
coocooeoeoco
cococoooo
cococoooo
cococoooo
eeeeeecee

Fig. 2: LISTEN state on Server side
9. Connection Termination states

a. FIN_WAIT2 state and CLOSE_WAIT state
Server or Client does close (CTRL+C)
i. What is the connection state in the client machine?

ii. What is the connection state in the server machine?

FIN_WAIT2
FIN WAIT2
FIN_WAIT2
FIN _WAIT2
FIN_WAIT2
FIN _WAIT2
FIN_WAIT2
FIN _WAIT2
FIN_WAIT2
FIN_WAIT2
FIN_WAIT2
FIN_WAIT2
FIN WAIT2
FIN_WAIT2
FIN WAIT2
FIN_WAIT2
FIN _WAIT2
FIN_WAIT2
FIN _WAIT2
FIN WAIT2

PR ARRERARRERARSL

(=Rl ol Ro oo N o oo oo Rolfo oo N o o)

]
[¢]
Q
¢}
]
¢}
]
¢}
]
0
]
]
[¢]
]
[¢]
Q
¢}
]
¢}
]

CLOSE_WAIT
CLOSE_WAIT
CLOSE_WAIT
CLOSE_WAIT
CLOSE_WAIT
CLOSE_WAIT
CLOSE_WAIT
CLOSE_WAIT
CLOSE_WAIT
CLOSE_WAIT
CLOSE_WAIT
CLOSE_WAIT
CLOSE_WAIT
CLOSE_WAIT
CLOSE_WAIT
CLOSE_WAIT
CLOSE_WAIT

oGO OOPDOOITIPIDPOIOIDIIOD
H bbb L L

b DL DLDLDLLLLL

Fig. 4: CLOSE_WAIT state on Client side (172.16.90.5)
a).TIME_WAIT

Connect to the Server with two (or more clients). Stop the server program

(normal close). Server goes to FIN_WAIT2. Then, terminate your client

programs.
i. Now, what is the connection state in the Server machine? Fig. 5:
172.16.90.5:47062 172.16.90.5: TIME:NAIT

172.16.90.5:47062 172.16.90.5: TIME_WAIT
172.16.90.5:47062 172.16.90.5: TIME_WAIT
172.16.90.5:47062 172.16.98.5: TIME_WAIT
172.16.90.5:47062 172.16.90.5: TIME_WAIT
172.16.90.5:47062 172.16.90.5: TIME_WAIT
172.16.90.5:47062 172.16.98.5: TIME_WAIT

172.16.90.5:47062 172.16.98.5: TIME_WAIT
172.16.90.5:47062 172.16.90.5: TIME_WAIT
172.16.90.5:47062 172.16.90.5: TIME_WAIT
172.16.90.5:47062 172.16.98.5: TIME_WAIT
172.16.90.5:47062 172.16.90.5: TIME_WAIT
172.16.90.5:47062 172.16.90.5: TIME_WAIT

TIME_WAIT state at Server

e I R e e R+ o e e i - e -
[clc oo icolole o oo ol c o

b. FIN_WAIT1
Terminate the server while the client is still receiving data from the server
(HINT: sending a single character will not give such behavior. You will need to send

lot more data). FIN_WAIT1 state will observed at server.

Up P « U o . « 10 .0 v Js T 3 WA
1470889 optiplex.bitscomn: 172.16.81.205:43499 FIN_WAIT1
1470889 optiplex.bitscomn: 172.16.81.205:43499 FIN_WAIT1
1470889 optiplex.bitscomn: 172.16.81.205:43499 FIN_WAIT1
1463649 optiplex.bitscomn: 172.16.81.205:43499 FIN_WAIT1
1457857 optiplex.bitscomn: 172.16.81.205:43499 FIN_WAIT1
1452065 optip .bitscomn: 172.16.81.205:434595 FIN_WAIT1
1447721 optiplex.bitscomn: 172.16.81.205:43499 FIN_WAIT1
1447721 optiplex.bitscomn: 172.16.81.205:43499 FIN_WAIT1
1447721 optiplex.bitscomn: 172.16.81.205:43499 FIN_WAIT1
1447721 optiplex.bitscomn: 172.16.81.205:43499 FIN_WAIT1
1447721 optiplex.bitscomn: 172.16.81.205:43499 FIN_WAIT1
1447721 optiplex.bitscomn: 172.16.81.205:43499 FIN_WAIT1
1447721 optiplex.bitscomn: 172.16.81.205:43499 FIN_WAIT1
1444825 optip .bitscomn: 172.16.81.205:43499 FIN_WAIT1
1444825 optiplex.bitscomn: 172.16.81.205:43499 FIN_WAIT1
1444825 optiplex.bitscomn: 172.16.81.205:43499 FIN_WAIT1
1444825 optiplex.bitscomn: 172.16.81.205:43499 FIN_WAIT1
1444825 optiplex.bitscomn: 172.16.81.205:43499 FIN_WAIT1
1444825 optiplex.bitscomn: 172.16.81.205:43499 FIN_WAIT1

a Z 3 - 5 0 A5 - g .

U

0
0
0
0
0]
0
0
0
0
0
0
0
0
0]
0
0
0
0
0
g

Fig. 6: FIN_WAIT1 at Server
2. Reset Connection

Try sending data to Server when it has been terminated. RST packet is transmitted to client.
a. Find the RST packet in Wireshark (Refer Figure 7 below)

17 1£D.0U3J20% d1£7.9.0.1 Ll£7.0.0.1 r 9 LUL 2 SULAS DTN, ALN] DEY=U HALR=L1 WLI=2L/UO LEI-U IID22=102370 2HLI_I’=N'I=L 1ovd L=
20 123.609565 127.0.0.1 127.0.0.1 TCP 66 46277 > cbt [ACK] Seg=1 Ack=1 Win=32896 Len=0 TSval=1274104 TSecr=1274104
21 147.600194 127.0.0.1 127.0.0.1 TCP 86 cbt > 46277 [FIN, ACK] Seg=1 Ack=1 Win=32768 Len=8 TSval=1280102 TSecr=1274104
22 147.603531 127.0.6.1 127.8.8.1 TCP 66 46277 > cbt [ACK] Segq=1 Ack=2 Win=32896 Len=0 TSval=1280183 TSecr=1280182
23/199.136167 |127.6.6.1 |127.6.6.1 |TCP 67 46277 = cbt [PSH, ACK] Seg=1 Ack=2 Win=32896 Len=1 TSval=1292986 TSecr=1288102
[[[[[
- Frame 24: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) F
- Ethernet II, Src: 80:00:00_00:00:00 (00:00:00:00:00:08), Dst: 00:00:00 _00:00:00 (00:00:00:00:00:00) |
- Internet Protocol Version 4, Src: 127.0.6.1 (127.0.0.1), Dst: 127.6.6.1 (127.0.6.1
" Transmission Contrel Protocol, Src Port: cbt (7777), Dst Port: 46277 (46277), Seq: 2, Len: © E;
Source port: cbt (7777) [
Destination port: 46277 (46277)
[Stream index: 2]
Sequence number: 2 (relative sequence number)
Header length: 20 bytes 7
¥ Flags: 8x@84 (RST)
008. = Reserved: Not set
LB = Nonce: Not set
R = Congestion Window Reduced (CWR): Not set
.a.. = ECN-Echo: Not set
- = Urgent: Not set F)
....... 0 = Acknowledgement: Mot set
........ 0... = Push: Not set a
4 1.. = Reset: Set C
..B. = Syn: Not set
........... 8 = Fin: Not set k
Nl mA AL, A ~Tun. A
e

t from Server (on port 7777) to client (on port 46277) with RST flag set

3. The Use of PUSH Flag
a. Observe the data packets. Since, the amount of data is too low (1 byte) the TCP
uses PUSH protocol to send the data. Figure 8 shows the PUSH flag being set in the
TCP packet (TCP Flags)

16 27.976351
17 27.976441
18 27.976534
19 27.976626
20 27.976718

172.
172.
172.
172.
172.

16.90.5
16.90.5
16.90.5
16.90.5
16.90.5

Source port: 59929 (59929)

Destination port: arepa-cas (3030)

[Stream index: 1]

Sequence number:

1

172.
172.
172.
172.
172.

16.90.5
16.90.5
16.90.5
16.90.5
16.90.5

(relative sequence number)

[Next sequence number: 2

Acknowledgement number: 1

Header length: 32 bytes
¥ Flags: 0x018 (PSH, ACK)

000.

= Reserved: Not set

Nonce: Mot set

Congestion Window Reduced (CWR): Not set
ECN-Echo: Not set

Urgent: Not set

Acknowledgement: Set

Push: Set
Reset: Not set
Syn: Not set
= Fin: Not set

(relative sequence number)]
(relative ack number)

TCP Header Fields:
The Transmission Control Protocol (TCP) is one of the core protocols of the Internet

67 arepa-cas > 59929
67 59929 > arepa-cas
67 arepa-cas > 59929
67 59929 > arepa-cas
67 arepa-cas > 59929

¥ Transmission Control Protocol, Src Port: 59929 (59929), Dst Port: arepa-cas (3030), Seq: 1, Ack: 1, Len: 1

Fig. 8: Use of PSH to send data

[PSH,
[PSH,
[PSH,
[PSH,
[PSH,

ACK]
ACK]
ACK]
ACK]
ACK]

Seq=4 Ack=5 Win=32768 Len=1
Seq=5 Ack=5 Win=33024 Len=1
Seq=5 Ack=6 Win=32768 Len=1
Seq=6 Ack=6 Win=33024 Len=1
Seq=6 Ack=7 Win=32768 Len=1

€3 Comma aali=T Win=22024 1an=1

TSval=166826865 TSecr=166826864
TSval=166826865 TSecr=166826865
TSval=166826865 TSecr=166826865
TSval=166826865 TSecr=166826865
TSval=166826865 TSecr=166826865

TCual=1RARIARAS TSarr=1RARIARAS

protocol suite (IP), and is so common that the entire suite is often called TCP/IP. TCP provides

reliable, ordered, error-checked delivery of a stream of octets between programs running on

computers connected to a local area network, intranet or the public Internet. It resides at the

transport layer.

Tool used: Wireshark

R

Experiment 2: Observation of fields in a TCP packet header

Close all the browsers.

Stop Wireshark and observe the packets.

Open the websitehttp://Ibrce.ac.in/in a browser window.

Run Wireshark in non-promiscuous mode with root privileges.

How to differentiate a control packet and a data packet?

5. Connection Establishment packets

a.

number 6) shows the TCP SYN flag set as in a Wireshark window.

Find the SYN packet in the TCP flow. The below diagram (Figure 9, see packet

http://www.bits-pilani.ac.in/
http://www.bits-pilani.ac.in/

Who sends the SYN packet?
What is the HLEN value for the SYN message?

Filter: tep.flags.syn&& ip.addr==202.78.175.227 ~ | Expression... Clear Apply

No. Time Source Destination Protocol Length Info
i 6 2.181752 202.78.175.227 74 49148 > http [SYN] Seq=0 Win=14600 Len=0 MS5=1460 SACK PERM=1 TSval=37600281 TSecr=0 W5=128

7 2.181993 202.78.175.227 172.16.90.4 TCP 66 http > 49148 [SYN, ACK] Seq=0 Ack=1 Win=14600 Len=0 MSS=1466 SACK PERM=1 WS=128
8 2.182019 172.16.90.4 202.78.175.227 TCP 54 49148 > http [ACK] Seq=1 Ack=1 Win=14720 Len=0

18 3.678641 172.16.90.4 202.78.175.227 HTTP 397 GET / HTTP/1.1

11 3.678916 202.78.175.227 172.16.90.4 TCP 68 http > 49147 [ACK] Seq=1 Ack=344 Win=15744 Len=0

202.

75.227 172.16.90.4 TCP 1452 [TCP segment of a reassembled PDU]

> Frame 6: 74 bytes on wire (592 bits), 74 bytes captured (592 bits)
> Ethernet II, Src: Dell_e9:b9:31 (14:fe:b5:e9:b9:31), Dst: Cisco d7:d0:08 (00:22:6c:d7:d0:08)
> Internet Protocol Version 4, Src: 172.16.90.4 (172.16.90.4), Dst: 202.78.175.227 (202.78.175.227)
¥ Transmission Control Protocol, Src Port: 49148 (49148), Dst Port: http (80), Seq: @, Len: @
Source port: 49148 (49148)
Destination port: http (86)
[Stream index: 1]
Sequence number: © (relative sequence number)
Header length: 40 bytes
v Flags: 6x002 (SYN) b
000 = Reserved: Not set
= Nonce: Not set
= Congestion Window Reduced (CWR): Not set
= ECN-Echo: Not set
= Urgent: Not set
= Acknowledgement: Not set
= Push: Not set
a-. - = Reset: Not set
»1. = Syn: Set

Fig. 9: SYN/ SYN-ACK /ACK packets

a. Find the SYN-ACK packet in the TCP flow. The above diagram (Figure 9, see packet
number 7) shows the SYN-ACK packet.
Who sends the SYN-ACK packet?

Find the first ACK packet from the server (the website). The below diagram (Figure 10) shows the TCP flags as
in a Wireshark window.

U oesauevas aresawesust ewessusareeser e S rwaTu s BLLp LI omyo e M AT ew s

10 3.678641 172.16.90.4 202.78.175.227 HTTP 397 GET / HTTP/1.1
11 3.678916 202.78.175.227 172.16.90.4 60 http > 49147k[ACK] Seq=1 Ack=344 Win=15744 Len=0

13 4.467359 202.78.175.227 172.16.90.4 TCP 1452 [TCP segmentsof a reassembled PDU]

Frame 11: 60 bytes on wire (480 bits), 60 bytes captured (488 bits)
Ethernet II, Src: Cisco_d7:d@:00 (8@:22:0c:d7:d@:80), Dst: Dell e9:b9:31 (14:fe:b5:e9:b9:31)
Internet Protocol Version 4, Src: 202.78.175.227 (262.78.175.227), Dst: 172.16.90.4 (172.16.90.4)
Transmission Control Protocol, Src Port: http (80), Dst Port: 49147 (49147), Seq: 1, Ack: 344, Len: ©
Source port: http (8@)
Destination port: 49147 (49147)
[Stream index: @]
Sequence number: 1 (relative sequence number
Acknowledgement number: 344 (relative ack number
Header length: 20 bytes
¥ Flags: 6x010 (ACK)
Reserved: Not set
Nonce: Not set
Congestion Window Reduced (CWR): Not set
ECN-Echo: Not set
= Urgent: Not set
Acknowledgement: Set
Push: Mot set
= Reset: Not set
= Syn: Not set
Fin: Not set

Fig. 10: Data ACKed by Server

a. Check if the last ACK in connection establishment (SYN-SYN ACK-ACK) is piggy
backed with data packets?

6. Connection Termination packets
a. Find the FIN packet in the TCP flow.

http://wiki.wireshark.org/

b. Find the ACK or FIN-ACK packet from the server (the website).
c. The below diagram (Figure. 11) shows the TCP FIN flags as in a Wireshark window.

No. Time Source Destination Protocol Length Info
3716 38.435764 202.78.175.227 54 49147 > http [FIN, ACK] S 40668 Win=81152 Len=0
3719 38.435925 202.78.175.227 172.16.90.4 TCP 66 http > 49151 [FIN, ACK] Seq=191407 Ack=2795 Win=21120 Len=0
3720 38.435935 172.16.90.4 202.78.175.227 TCP 54 43151 > http [ACK] Seq=2795 Ack=191468 Win=118336 Len=0

> Frame 3716: 54 bytes onpwire (432 bits), 54 bytes captured (432 bits)
» Ethernet II, Src: Dell_€9:b9:31 (14:fe:b5:e9:b9:31), Dst: Cisco _d7:de:ee (60:22:6c:d7:de:ee)
» Internet Protocol Version 4, Src: 172.16.90.4 (172.16.90.4), Dst: 202.78.175.227 (202.78.175.227)
7 Transmission Control Protocol, Src Port: 49147 (49147), Dst Port: http (80), Seq: 4391, Ack: 740668, Len: @

Source port: 49147 (49147)

Destination port: http (80)

[Stream index: 0]

Sequence number: 4391 (relative sequence number)

Acknowledgement number: 740668 (relative ack number

Header length: 2@ bytes
¥ Flags: @x011 (FIN, ACK)

eee. = Reserved: Not set
.. = Nonce: Not set

A Congestion Window Reduced (CWR): Not set
.0.. = ECN-Echo: Not set
Urgent: Not set
Acknowledgement: Set
Push: Not set
Reset: Not set
Syn: Not set
Fin: set

=]
[
(]

Fig. 11: Connection termination with FIN flags

1. Urgent flag
a. In the Wireshark capture of your Client-Server module, find the packet(s) with

Urgent flag set. (Figure 12)

16059 6.323902 172.16.90.5 172.16.90.4 TP 1514 57 64443 > 58020 [ACK, URG] Seq=61104153 Ack=1 Win=14592 Urg=65535 Len=1448 TSval=214488908 TSecr=23201540
16060 6.323907 172.16.90.5 172.16.90.4 TcP 1514 57 64443 > 58020 [ACK, URG] Seq=61105601 Ack=1 Win=14592 Urg=65535 Len=1448 TSval=214488908 TSecr=23201540
16062 6.323916 172.16.90.5 172.16.90.4 T 1514 57 64443 > 58020 [ACK, URG] Seq=61107049 Ack=1 Win=14592 Urg=65535 Len=1448 TSval=214488908 TSecr=23201540
16063 6.323920 172.16.90.5 172.16.90.4 TcP 1514 57 64443 > 58020 [ACK, URG] Seq=61108497 Ack=1 Win=14592 Urg=65535 Len=1448 TSval=214488908 TSecr=23201540
16065 6.323929 172.16.90.5 172.16.90.4 T 1514 57 64443 > 58020 [ACK, URG] Seq=61109945 Ack=1 Win=14592 Urg=65535 Len=1448 TSval=214488908 TSecr=23201540
16066 6.323933 172.16.90.5 172.16.90.4 TcP 1514 57 64443 > 58020 [ACK, URG] Seq=61111393 Ack=1 Win=14592 Urg=65535 Len=1448 TSval=214488908 TSecr=23201540
16068 6.324310 172.16.90.5 172.16.90.4 TcP 1514 57 64443 > 58020 [ACK, URG] Seq=61201169 Ack=1 Win=14592 Urg=65535 Len=1448 TSv; 4488909 TSecr=23201542
16069 6.324311 172.16.90.5 172.16.90.4 TP 1514 57 64443 > 58020 [ACK, URG] $eq=61202617 Ack=1 Win=14592 Urg=65535 Len=1448 TSval=214488909 TSecr=23201542
160206324213 172 16.90.5. 172 16.90.4. IcP 1514 57 64443 > SR020_LACK. URG] Sea=61204065 Ack=1 Win=14592 Urg=65535 Len=1448 TSval=214488909 TSecr=23201542

v Transmission Control Protocol, Src Port: 64443 (64443), Dst Port: 58020 (58020), Seq: 61096913, Ack: 1, Len: 1448
Source port: 64443 (64443)
Destination port: 58020 (58020)
{Stream index: 0]

Sequence number: 61096913 (relative sequence number)
[Next sequence number: 61098361 (relative sequence number)]
Acknowledgement number: 1 (relative ack number)

Header length: 32 bytes
¥ Flags: 0x030 (ACK, URG)

000, Reserved: Not set

Nonce: Not set

ngestion Window Reduced (CWR): Not set
-Echo: Not set

Urgent: Set

354 Acknowledgement : Set
. 0... = Push: Not set

= Reset: Not set

.0. = Syn: Not set
0 = Fin: Not set

Window size value: 57

Fig. 12: URG flag set

2. Source port/Destination Port

The below figure (Figure. 13) shows the source port and destination port of a packet

that travels from the web browser to the server.

3676 16.599598 172.16.90.4 202.78.175.227 TCP 54 49147 > http [ACK] Seq=4391 Ack=728191 Win=81152 Len=0
3679 16.600930 g 54 49147 >

3681 16.601481 172.16.90.4 202.78.175.227 TCP 54 49147 > http [ACK] Seq=4391 Ack=732385 Win=81152 Len=0
3683 16.602412 172.16.90.4 202.78.175.227 TCP 54 49147 > http [ACK] Seq=4391 Ack=733783 Win=81152 Len=0

Frame 3679: 54 bytes on wire (432 bits), 54 bytes captured (432 bits)

Ethernet II, Src: Dell e9:b9:31 (14:fe:b5:€9:b9:31), Dst: Cisco_d7:d0:00 (00:22:0c:d7:d8:00)

Internet Protocol Version 4, Src: 172.16.90.4 (172.16.90.4), Dst: 202.78.175.227 (202.78.175.227)
Transmission Control Protocol, Src Port: 49147 (49147), Dst Port: http (80), Seq: 4391, Ack: 731049, Len: @

Fig. 13: Source port= 49147, Destination port= 80

Does the destination port number change for all packets from a client to a server?

b. For a given connection, will the source port number change for all packets from a client to a

server?
c. What is the source and destination port number of a packet that traverses from
the server to the client machine?
3. Sequence Number/Acknowledgement Number
Observe the sequence number and acknowledgement number in connection establishment
packets.
a. Write down the sequence number and acknowledgement number for the following
packets.
SYN packet
SYN-ACK packet
ACK packet
b.What is the value of Window Size in each of the packets in question (a)

1. Round Trip Time Measurement
a. Go to the SYN packet in the TCP flow. Find the “timestamps” field in TCP Options
(Refer Figure 14 below). The value of TSecr should be 0.

¥ Checksum: 0x0c59 [validation disabled]
[Good Checksum: False]
[Bad Checksum: False]
¥ Options: (20 bytes)
Maximum segment size: 1460 bytes
TCP SACK Permitted Option: True
¥ Timestamps: TSval 189415552, TSecr 0
Kind: Timestamp (8)
Length: 10
Timestamp walue: 189415552
Timestamp echo reply: O
No-Operation (NOP)

Fig. 14: TSecr value =0

b.Go to the SYN-ACK packet in the TCP flow. The “timestamps” field should be similar to the below figure

(Figure. 15). What is the value of TSecr?

Maximum segment size: 1460 bytes
TCP SACK Permitted Option: True
¥ Timestamps: TSval 38123463, TSecr 189415552
Kind: Timestamp (8)
Length: 10
Timestamp walue: 38123463
Timestamp echo reply: 189415552
Mo-Operation (NOP)
¥ Window scale: 7 (multiply by 128)
Kind: Window Scale (3)
Length: 3
Shift count: 7
[Multiplier: 128]

Fig. 15: TSecr value for SYN-ACK

The round trip time is calculated based on the receipt of SYN-ACK packet from the server.
When the client receives the ACK packet, it subtracts the received TSecr from the current

clock (OS Clock) to obtain the round trip clock difference.

Now, RTT = Round Trip Clock Difference * Clock Period
2. Flow Control

a. Inyour Client-Server pcap, can you identify TCP out-of-order packets and TCP Dup ACKs?

13 0.013998 .16.81.205 . 78 43499 > 64443

15 0.016163 .16.81.@5 .16.90.5 78 43499 > 64443 [ACK

16 0.016195 172.16.90.5 172.16.81.205 TCP 1514 64443 > 43499 [ACK] Seq=18929 Ack=1 Win=14592 Len=1448 TSval=212554321 TSe
17 8.025121 172.16.81.205 172.16.96.5 TCcP 78 43499 > 64443 [ACK] Seq=1 Ack=8689 Win=46576 Len=0 TSval=1173638 TSecr=21:
18 0.825154 172.16.90.5 172.16.81.205 TCP 1514 64443 > 43499 [ACK] Seq=20377 Ack=1 Win=14592 Len=1448 TSval=212554323 TSe
19 0.026084 172.16.81.205 172.16.90.5 TCP 66 43499 > 64443 [ACK] Seq=1 Ack=10241 Win=49472 Len=0 TSval=1173638 Tsecr=2]
20 0.826116 172.16.96.5 172.16.81.205 TCcP 1514 64443 > 43499 [ACK] Seq=21825 Ack=1 Win=14592 Len=1448 TSval=212554324 TSe
21 0.027797 172.16.81.205 172.16.90.5 TCP 66 43499 > 64443 [ACK] Seq=1 Ack=11689 Win=52368 Len=0 TSval=1173638 TSecr=2]
22 0.027824 172.16.90.5 172.16.81.205 TCP 1514 64443 > 43499 [ACK] Seq=23273 Ack=1 Win=14592 Len=1448 TSval=212554324 TSt
23 0.0928983 172.16.81.205 172.16.90.5 TCP 66 43499 > 64443 [ACK] Seq=1 Ack=13137 Win=55264 Len=6 TSval=1173639 TSecr=21
24 0.029018 172.16.90.5 172.16.81.205 TCP 1514 64443 > 43499 [ACK] Seq=24721 Ack=1 Win=14592 Len=1448 TSval=212554324 TSe
25 0.840483 172.16.81.205 172.16.96.5 TCcP 66 43499 > 64443 [ACK] Seq=1 Ack=14585 Win=58160 Len=8 TSval=1173639 TSecr=21
26 ©.0940514 172.16.90.5 172.16.81.205 TCP 1514 64443 > 43499 [ACK] Seq=26169 Ack=1 Win=14592 Len=1448 TSval=212554327 TSe
27 ©.040554 172.16.81.205 172.16.90.5 TCP 66 43499 > 64443 [ACK] Seq=1 Ack=16033 Win=61056 Len=0 TSval=117364@ TSecr=2]
28 0.040569 172.16.90.5 172.16.81.205 TCP 1514 64443 > 43499 [ACK] Seq=27617 Ack=1 Win=14592 Len=1448 TSval=212554327 TSe
29 0.040785 172.16.81.205 172.16.90.5 TCP 6643499 > 64443 [ACK] Seq=1 Ack=17481 Win=63952 Len=0 TSval=1173648 TSecr=21
30 0.040816 172.16.90.5 172.16.81.205 TCP 1514 64443 > 43499 [ACK] Seq=29065 Ack=1 Win=14592 Len=1448 Tsval=212554327 TSt
31 0.040880 172.16.81.205 172.16.90.5 TCP 66 43499 > 64443 [ACK] Seq=1 Ack=18929 Win=66848 Len=0 TSval=1173641 TSecr=21
32 0.040901 172.16.90.5 172.16.81.205 TCP 7306 64443 > 43499 [ACK] Seq=30513 Ack=1 Win=14592 Len=724@ TSval=212554327 TSe¢

Fig. 16: TCP DUP ACKs and TCP out of order packets

b. Window Size scaling

yvYy

No.

Time Source Destination Protocol Length window size value info

30.000275 172.16.90.4 172.16.90.5 TcP 66 7300 58020 > 64443 [ACK) Seq=1 Ack=1 Win=14600 Len=0 TSval=23199961 TSecr=214487327
40.000413 172.16.90.5 172.16.90.4 Tce 7306 57 64443 > 58020 [ACK) Seqe1 Acke] Win=14592 Len=7240 TSvals214487328 TSecr=23199961
50.000432 172.16.90.5 172.16.90.4 e 7306 57 64443 > 58020 [PSH, ACK] Seq=7241 Ack=! 240 TSval=214487328 TSecr=23199961
60.001938 172.16.90.4 172.16.90.5 Tce 66 8748 58020 > 64443 [ACK] Seq=1 Ack=1449 Wis

70.001963 172.16.90.4 172.16.90.5 Tep 66 10196 58020 > 64443 [ACK] Seq=1 Ack=2897 Wi

80.001978 172.16.90.5 172.16.90.4 T 5858 > 58020 [ACK] Seq=14481 Ack=1 Win=14592 Len

90.001987 172.16.90.4 172.16.90.5 Tcp 66 11644 58020 > 64443

100.001999 172.16.90.5 172.16.90.4 Tcp 1518 57 64443 > 58020

110.002008 172.16.90.4 Tce 66 13092 58020 > 64443

Len
66 Seq=1 Ack=7241 Win=29080 Len=0 TSval=23199961 Tsec:
TP 7306 57 64443 > 58020 [PSH, ACK] Seq=21721 Ack=1 Win=14592 Len=7240 T5val=214487328 TSec:
66 15988 58020 TSval=23199961 TSecr=214487328

X1 Sea1 Ack=10137 Win34872 Len=0 TSval=23199961 TSecr=214487328

120.002009 172.16.90.4
130.002016 172.16.90.5
14.0.002022 172.16.90.4 172.16.90.5 TP

B
&
H

[Stream index: 0]
Sequence nusber: 1 (relative sequence number)
Acknowledgenent number: 60855097 (relative ack nusber)
Header length: 32 bytes
Flags: X010 (ACK)
000 Reserved: Not set
20 eeee ... = Nonce: Mot set
o = Congestion Window Reduced (CWR): Mot set
= ECN-Echo: Mot set
Urgent: Not set
1 = Acknowledgement: Set
0... = Push: Mot set
0.. = Reset

§ 0 = Fin: Not set
Window size value: 64812

[Calculated window size: 120624]
[Window size scaling factor: 2}
Checksum: Oxcbel [validation disabled]
Options: (12 bytes)

Fig. 17: Scaling window sizes

References
Unix Manual:http://man7.org/linux/man-pages/man2/socket.2.html
Wireshark User’s Guide:www.wireshark.org/docs/wsug _html chunked/
Wireshark Wiki Help:wiki.wireshark.org/

http://man7.org/linux/man-pages/man2/socket.2.html
http://www.wireshark.org/docs/wsug_html_chunked/
http://wiki.wireshark.org/

Experiment-8

Aim: To learn Transmission Control Protocol (TCP) Flow Control, Error Control, and

Congestion Control.

TCP Flow Control:

Automatic Repeat reQuest (ARQ), also known as Automatic Repeat Query, is an error-control
method for data transmission that uses acknowledgements (messages sent by the receiver indicating
that it has correctly received a data frame or packet) and timeouts (specified periods of time allowed
to elapse before an acknowledgment is to be received) to achieve reliable data transmission over an
unreliable service. If the sender does not receive an acknowledgment before the timeout, it usually
re-transmits the frame/packet until the sender receives an acknowledgment or exceeds a predefined
number of re-transmissions.

Selective Repeat is part of the automatic repeat-request (ARQ). With selective repeat, the
sender sends a number of frames specified by a window size even without the need to wait for
individual ACK from the receiver as in Go-back N ARQ. However, the receiver sends ACK for each
frame individually, which is not like cumulative ACK as used with go-back-n. The receiver accepts out-
of-order frames and buffers them. The sender individually retransmits frames that have timed out.

Tools used: Wireshark

Experiment 1: Demonstration of TCP Flow Control techniques
1. Open capture.pcap file in Wireshark.
2. Each and every ACK packet should have ACK flag bit set. Check if it is true for all the ACK packets.
3. A SACK reports a block of bytes that is out of order. Find a couple of packets with SACK
option set? Write down the sequence number of the packets carrying SACK options?
4. Identifying zero window size packets (figure above)
Go to Analyze->Expert Info composite. Under Warnings tab you should be able to see packet

numbers which had zero Window.

No Time Source Destination Protocol Length Sequence number Acknowledgement number Calculated window size Info
6778 90.508766 172.16.83.149 172.16.90.4 TCP 1514 7588969 1 14592 64443 > 46155 [ACK] Se

6780 90.511452 172.16.83.149 172.16.90.4 TCP 1514 7590417 1 14592 64443 > 46155 [ACK] Se

| g L | | { i

» Ethernet II, Src: Dell e9:b9:31 (14:fe:b5:e9:b9:31), Dst: Cisco d7:d0:00 (00:22:0c:d7:d0:60)

» Internet Protocol Version 4, Src: 172.16.90.4 (172.16.90.4), Dst: 172.16.83.149 (172.16.83.149)

v Transmission Control Protocol, Src Port: 46155 (46155), Dst Port: 64443 (64443), Seq: 1, Ack: 7573041, Len: 0
Source port: 46155 (46155)

Destination port: 64443 (64443)
[Stream index: 0]
Sequence number: 1 (relative sequence number)

Acknowledg nt number: 7573041 (relative ack number)
Header length: 44 bytes
» Flags: 0x010 (ACK)
Window size value: 331
[Calculated window size: 42368]
[window size scaling factor: 128]
» Checksum: 0x@5ed [validation disabled]
v Optio (24 bytes)
No-Operation (NOP)
No-Operation (NOP)
> Timestamps: TSval 148428888, TSecr 1491306
No-Operation (NOP)
No-Operation (NOP)
¥ SACK: 7574489-7591865

left edge = 7574489 (relative)
right edge = 7591865 (relative)

No. Time Source Destination Protocol Info Calculated window size

Tu T rrvzur TroviuiaeeT B LT TULTZ S UTTTY [ASIN] DUY—I ACN—L IUSY ML TEoun COT—Y TG T Tzouu

167 4.173004 172.16.5%0.4 172.16.83.149 TCP 46142 > 64443 [ACK] Seq=1 Ack=124529 Win=42368 Len=0 TSval=1 42368

176 4.177498 172.16.5%0.4 172.16.83.149 TCP 46142 > 64443 [ACK] Seq=1 Ack=127425 Win=42368 Len=0 TSval=1 42368

174 4.187524 172.16.90.4 172.16.83.149 TCP 46142 > 64443 [ACK] Seq=1 Ack=137561 Win=36096 Len=0 TSval=1 36096

182 4.216286 172.16.90.4 172.16.83.149 TCP 46142 > 64443 [ACK] Seq=1 Ack=167969 Win=15184 Len=8 TSval=1 15104

193 4.246365 172.16.90.4 172.16.83.149 TCP 46142 > 64443 [ACK] Seq=1 Ack=182449 Win=5248 Len=0 TSval=14 5248

197 4.276434 172.16.90.4 172.16.83.149 TCP 46142 > 64443 [ACK] Seq=1 Ack=186793 Win=2176 Len=0 TSval=14 2176

199 4.323487 172.16.%90.4 172.16.83.149 TCP 46142 > 64443 [ACK] 68 Len=0 TSval=147 768

215 4.787472 172.16.5%0.4 172.16.83.149 TCP 46142 > 64443 [ACK] Seq=1 Ack=202721 Wi 192 Le Tsval=14 8192

221 4.817538 172.16.90.4 172.16.83.149 TCP 46142 > 64443 [ACK] Seq=1 Ack=209961 Win=3072 Len=0 TSval=14 3872

4 4 .1 > Win=256 Len=8 TSval=147

Errors: 0 (0) | Warnings: 5 (567)

* Sequence TCP ACKed lost segment (common at ¢

Group Protocol summary
*» Sequence TCP window is Full
¥ Sequence TCP Zero window
Packekt: 203
Packek: 234
Packek: 236
Packet: 259
Packek: 267
Packek: 298
Packek: 304
Packet: 329
Packek: 333
Packek: 362
Packet: 364
Packek: 389
Help |

Wireshark 10 Graphs: etho (tcp port 64443)

OO OO OO 0O O
-7 7 1 g1 71 71 1 [T 71 1 Tt [T °r [Tt 1 Tt [©t T T [T T Tt T T T T T T

120.0s 122.0s 124.0s 126.0s
Graphs
| Graph 1 | Color |Filter: |

Graph 2| Color |Filter: |
Graph 3| Color |Filter: |
| Graph 4 | Color |Filter: |

|Graphs | Color |Filter: |

Help || Copy |

Motes: 4 (185) | Chats: 10 (229)

Calc:| COUNT(¥) 2 |
Calc:| COUNT(¥) : | tcp.analysis.zero_window

Calc| COUNT(*) : | tcp.analysis.window_update

Details: 981

136.0s

Style: | FBar

Style: | FBar
Style: | FBar
Style: | Line

Style: | Line

138.0s 140.0s

© | Unik: |Advanced... B

' Scale: | Auto =

14
191
357

B T T T e e e T R}

X Axis

Tick interval:| 0.1sec

Pixels per tick: A—
"] View as time of day
Y Axis

| Close || save |

To identify zero window and window updates graphically:

Go to Statistics = 10 graphs. For X axis, choose the Tick interval as 0.1 second and Pixels per
tick as 5. For Y axis, choose Unit as Advanced. Plot graphs for tcp.analysis.zero_window and
tcp.analysis.window_update as shown above. To generate the graph(s), click on the 'Graph x'

(x=1,2,...) button at the left.

Similarly, you can generate a graph to observe TCP full window with zero window and window
update.

Modify arguments as shown below:

Wireshark 10 Graphs: etho (tcp port 64443)

— 10000
— 5000
LI S RN MU S A S R N A M A | N
12.00s 12.50s 13.00s 13.50s 14.00s 14.50s 15.00s 15.50s 16.00s 16.50s 17.00s 17.50s 18.00s
Graphs X Axis
Graph 1| Color | Filter: Style: | FBar : | Tickinterval: 0.01sec 2
‘Graphz‘iolor Filter: | tecp.analysis.zero_window style: | Line < | Pixels pertick: p —
‘Craph}‘ olor | Filter: | | tep.analysis.window_update style: | Line - | [Viewastime of day
1 . — N Y Axis
Graph 4| Color | Filter: | |tcp.analysis.window_full] style: | Line
— Unit: Bits/Tick -
Graph 5 Filter: Style: | Line —
— Scale: Auto
Help Copy | Close | Save

5. Response time |0 Graphs (Inter-arrival time)
To observe time delay between packets, go to Statistics = 10 graphs. For Y axis, choose the

Unit as Advanced. Generate graph for time delay between packets as shown below. Large spike in the
graph indicates large delays in time.

Wireshark 10 Graphs: capture2.pcap

-1 +] v 1 v | 1 ¢ ‘"T1 ¢+] 1+ T 1 1 1 "~ 1 1 ™ | v Tt 1 *+ T 1 71 ' 0.0s

1 50.0s 52.0s 54.0s 56.0s 58.0s 60.0s 62.0s 64.0s 66.0s 68.0s
; Graphs X Axis
Graph 1| Color |Filter: | Calc:| SUM(%) | Style: | Line s | Tickinterval: 0.1 sec =
; Graph 2| Color Filter: | Calc:| SUM(%) 2 l[frame.ﬁme_delta_displayed Style: | Line : | Pixels per tick: |5 |
| |Graph3 | Color |Filter: | Calc:| SUM(¥) = Style: | Line & [] Viewas time of day
l J — J _— e — 1| Y Axis
{ |Graph4 Color Filter: | Calc:| SUM(%) = Style: | Line =
|l —_— —_— ——— Unitt |Advanced.. =
Graph 5| Color |Filter: | Calc:| SUM(%) = Style: | Line - ———
__—_J e = ‘—— | Scale: | Auto =
1 e —
1| Help /| Copy | Close | Save |

6. TCP Stream Graphs

TCP Graph 1: capture2.pcap 172.16.83.149:64443 -> 172.16.90.4:46180

Throughput
[8/s] Throughput Graph
1
. 1000000 —]
i
H 500000 —|
1 .
| 8 1
1
) i
1 i
. s, . .
- PP, LS O PR R LI L I PN 2
! I i l ! I i I ! T i T ! T ! I f I
10 20 30 40 50 60 70 80 90 100
Time[s]

TCP Craph 12 wlan0 17216803 . 142:64443 -» 1721690 4:46155

RTT [s) Round Trip Time Graph

4.0 -

10000000

sequence Number(n)

a. Round Trip Time Graph

Filter packets going from Server - Client:
Go to Statistics - TCP stream graphs ->Round Trip Time graph

In the graph shown below, you can see a spike occurring for RTT. The explanation for this behavior is
that the graph was obtained for a capture done with the Server on a laptop with a wi-fi connection.
The Server was deliberately moved away from the wi-fi access point in a zone of weak network

strength, which led to increased RTT values of the packets.

a. Throughput Graph
Filter packets going from Server-> Client:

Go to Statistics-> TCP stream graphs->Throughput graph

b. Window Scaling Graph

Filter packets going from Client->Server:
Go to Statistics-> TCP stream graphs->Window Scaling Graph

) TCP Graph 16: wlan0 172.16.90.4:46180 -> 172.16.83.149:64443

Windowsize
[bytes] window Scaling Graph

40000 —

.....................

Time [s]

For better observations, you may zoom in the graph (Click the middle button on your mouse

at the area which you want to zoom)
Window scale factors can be observed in the SYN packets sent from each side at the beginning of the TCP

flow.

Time Source Destination Protocol Info

> Frame 11: 74 bytes on wire (592 bits), 74 bytes captured (592 bits)
» Ethernet II, Src: Cisco d7:de:00 (00:22:0c:d7:d@:00), Dst: IntelCor 7c:76:40 (00:22:fb:7c:76:40)
» Internet Protocol Version 4, Src: 172.16.90.4 (172.16.90.4), Dst: 172.16.83.149 (172.16.83.149)
v Transmission Control Protocol, Src Port: 46142 (46142), Dst Port: 64443 (64443), Seq: 0, Len: ©
Source port: 46142 (46142)
Destination port: 64443 (64443)
[Stream index: 2]
Sequence number: 0 (relative sequence number)
Header length: 46 bytes
> Flags: 0x002 (SYN)
Window size value: 14600
[Calculated window size: 14660]
» Checksum: 0xaf69 [validation disabled]
v Options: (26 bytes)
Maximum segment size: 1460 bytes
TCP SACK Permitted Option: True
> Timestamps: TSval 147774714, TSecr ©
No-Operation (NOP)
» Window scale: 7 (multiply by 128)

TCP Error Control:
There are six important rules that define thegeneration of an acknowledgement. The rules are

given below.

Tool used: Wireshark

Experiment 2: Observation of Error Control in TCP protocol
a. Rulel: Normal TCP Operation
b. When end A sends a data segment to end B, it must include (piggyback) an

acknowledgement that gives the next sequence number it expects to receive. This rule

decreases the number of segments needed and therefore reduces traffic.

C. Can you see acknowledgement packets that are piggybacked?

No. Time Source Destination Protocol Length Sequence number Acknowledgement number Calculated windowsize Info

30.001023 172.16.90.4 172.16.83.149 14720 46180 > 64443 [ACK] Seg=1
40.063212 172.16.83.149 172.16.90.4 TP 1514 1 I 14592 64443 > 46180 [ACK] Seq=1
50.003253 172.16.90.4 172.16.83.149 TCP 66 1 1449 17536 46180 > 64443 [ACK] Seq=1

v Transmission Control Protocol, Src Port: 64443 (64443), Dst Port: 46180 (46180), Seq: 1, Ack: 1, Len: 1448
Source port: 64443 (64443)
Destination port: 46180 (46180)
[Stream index: 6]
Sequence number: 1 (relative sequence number)
[Next sequence number: 1449 (relative sequence number)]
Acknowledgement number: 1 (relative ack number)
Header length: 32 bytes
¥ Flags: 6x010 (ACK)
@00. = Reserved: Not set [N
S SO = Nonce: Not set
.. 8... = Congestion Window Reduced (CWR): Not set
= ECN-Echo: Not set
= Urgent: Not set
.. = Acknowledgement: Set
,,,,,, = Push: Not set
= Reset: Not set
= Syn: Not set
........... © = Fin: Not set
Window size value: 57
[Calculated window size: 14592]
[Window size scaling factor: 256]
» Checksum: 0xfb68 [validation disabled]
» Options: (12 bytes)
» [SEQ/ACK analysis]
v Data (1448 bytes)
Data: 61.. .

2. Rule2: Delayed ACK

a. When the receiver has no data to send and it receives an in-order segment (with
expected sequence number) and the previous segment has already been acknowledged,
the receiver delays sending an ACK segment until another segment arrives or until a
period of time (normally 500ms) has passed.

b. We will observe this behavior along with rule 3.

3. Rule3: Preventing unnecessary retransmission of data segments.

a. When a segment arrives with a sequence number that is expected by the receiver, and
the previous in-order segment has not been acknowledged, the receiver immediately
sends an ACK segment.

b. Find the ACK packets in the pcap file which correspond to delayed ACK (rule 2) and rule

3. (See the two images below)

497 20.684882 172.16.83.149 172.16.90.4 TCP 64443 > 46180 [ACK] Seq=454673 Ack=1 Win=14592 Len=1448 454673
498 20.698602 172.16.90.4 172.16.83.149 TCP 46188 > 64443 [ACK] Segq=1 Ack=440193 Win=17664 Len=0 TS) 1
499 20.698644 172.16.83.149 172.16.90.4 TCP 64443 > 46180 [ACK] Segq=456121 Ack=1 Win=14592 Len=1448 456121
.729188 .16.90. .16.83.149 TCP > Seq=1 Ack=456121 Win=6656 Len=8 TSwv:
501 20.729240 172.16.83.149 172.16.90.4 TCP 64443 > 46180 [ACK] Seg=457569 Ack=1 Win=14592 Len=1448 457569
502 20.729296 172.16.83.149 172.16.90.4 TCP 64443 > 46180 [PSH, ACK] Seq=4590817 Ack=1 Win=14592 Len: 459017
503 20.729320 172.16.83.149 172.16.98.4 TCP 64443 > 46180 [ACK] Seg=460465 Ack=1 Win=14592 Len=1448 460465
504 20.783872 172.16.90.4 172.16.83.149 TCP 46188 > 64443 [ACK] Seg=1 Ack=461913 Win=2688 Len=0 TSvi 1
505 20.783917 172.16.83.149 172.16.90.4 TCP 64443 > 46180 [ACK] Seq=461913 Ack=1 Win=14592 Len=1448 461913
Sequence number: 1 (relative sequence number)
Acknowledgement number: 456121 (relative ack number)

Header length: 32 bytes
Flags: 0x010 (ACK)
Window size value: 52
[Calculated window size: 6656]
[Window size scaling factor: 128]
Checksum: ©x4ade [validation disabled]
Options: (12 bytes)
[SEQ/ACK analysis]
[This is an ACK to the segment in frame: 497]
[The RTT to ACK the segment was: ©.044306000 seconds]

v

4V

1. Rule4: Out-of-order sequence numbers

497 20.664882 172.16.83.149 172.16.90.4 TCP 64443 > 46180 [ACK] Seq=454673 Ack=1 Win=14592 Len=1448 454673
498 20.698602 172.16.90.4 172.16.83.149 TCP 46180 > 64443 [ACK] Seg=1 Ack=448193 Win=17664 Len=0 TS 1
499 20.698644 172.16.83.149 172.16.96.4 TCP 64443 > 46180 [ACK] Seq=456121 Ack=1 Win=14592 Len=1448 456121
500 20.729188 172.16.908.4 172.16.83.149 TCP 46180 > 64443 [ACK] Seg=1 Ack=456121 Win=6656 Len=0 TSvi 1
501 20.729240 172.16.83.149 172.16.90.4 TCP 64443 > 46180 [ACK] Seq=457569 Ack=1 Win=14592 Len=1448 457569
502 20.729296 172.16.83.149 172.16.90.4 TCP 64443 > 46180 [PSH, ACK] Seq=459817 Ack=1 Win=14592 Len: 459017
583 20.729320 172.16.83.149 172.16.96.4 TCP 64443 > 46180 [ACK] Seq=460465 Ack=1 Win=14592 Len=1448 460465
| | i
505|29.?83917 |l?2.16.83.149 172.16.90.4 |TCP 64443 > 46180 [ACK] Seq=461913 Ack=1 Win=14592 Len=1448 461913
Seguence number: 1 (relative sequence number)
Acknowledgement number: 461913 (relative ack number)

Header length: 32 bytes
» Flags: 0x018 (ACK)
Window size value: 21
[Calculated window size: 2688]
[Window size scaling factor: 128]
» Checksum: ©x33bd [validation disabled]
» Options: (12 bytes)
¥ [SEQ/ACK analysis
[This is an ACK to the segment in frame: 583]
[The RTT to ACK the segment was: ©.854552000 seconds]

a. When a segment arrives with an out-of-order sequence number that is higher than
expected, the receiver immediately sends an ACK segment announcing the sequence
number of the next expected segment.

b. Find the out-of-order sequence numbered packets in the pcap file.

No. Time Source Destination Protocol Info

162 233796 172.16.90. 172.16.83.149 TCP 46180 > 64443 [ACK] Se

1631 147.233862

172.16.83.149 172.16.90.4 [TCP Out-Of-Order] 64443 > 46188 [ACK] Seq=1894689 A

TCP ck=]
Sequence number: 1894689 (relative sequence number)
[Next sequence number: 1096137 (relative sequence number)]
Acknowledgement number: 1 (relative ack number)

Header length: 32 bytes
» Flags: ©x@1e (ACK)
Window size value: 57
[Calculated window size: 14592]
[Window size scaling factor: 256]
» Checksum: 0xcecd [validation disabled]
v Options: (12 bytes)
No-Operation (NOP)
No-Operation (NOP)
> Timestamps: TSval 1878536, TSecr 148815188
v [SEQ/ACK analysis]
[Bytes in flight: 23168]
¥ [TCP Analysis Flags]
¥ [This frame is a (suspected) out-of-order segment]
v [Expert Info (Warn/Sequence): Out-0f-Order segment]

http://wiki.wireshark.org/

2. Rule5: Missing segments
a. When a missing segment arrives, the receiver sends an ACK segment to announce the
next sequence number expected. This informs the receiver that segments reported
missing has been received.
b. Find the transmission of missing segments in the pcap file (see the last packet in the

figure below).

C. Canyou see their corresponding ACKs in the pcap file?

172.16.83.149 1068625 14592 [TCP Previous segment lost
9 a6 7 TCP Dup ACK 1126#1] 4618

172
1870073

[Next sequence number: 1876073 (relative sequence number)]
Acknowledgement number: 1 (relative ack number)
Header length: 32 bytes
¥ Flags: 0x018 (ACK)
000. = Reserved: Not set

... = Nonce: Not set
.. = Congestion Window Reduced (CWR): Not set %
. = ECN-Echo: Not set
voe. 2Bl o000 = Urgent: Not set
....... 1 = Acknowledgement: Set
........ 8... = Push: Not set
.... .B.. = Reset: Not set
..B. = Syn: Not set
........... 0 = Fin: Not set
Window size value: 57
[Calculated window size: 14592]
[Window size scaling factor: 256]
» Checksum: ©x3f17 [validation disabled]
P Options: (12 bytes)
v [SEQ/ACK analysis]
v [TCP Analysis Flags]
> [A segment before this frame was lost]
» Data (1448 bytes)

1. Rule6: Duplicated segments

a. If a duplicate segment arrives, the receiver discards the segment, but immediately

sends an acknowledgment indicating the next in-order segment expected.
b. Find the transmission of duplicated segments in the pcap file.

c. Do you see TCP Fast Retransmit happening after Dup ACKs?

Destination Protocol Info

172. 1¢ 4 172

14 1

1666 149.621344 172.16.83.149 172.16.90.4 TC

64443 > 46180 [ACK] Segq=1113513 Ack=1 Win=14592

1667 149.642899 172.16.90.4 172.16.83.149 TCP [TC (K 1661#2]
1668 149.642918 172.16.83.149 172.16.90.4 TC 64443 > 46180 [ACK] Seq
1669 ; 7 172.1¢€ |

149.¢)] 4 172.16.83 (P [. 1661#3] 4¢

149 172.16.98

y 172.16.83

63

TCP Congestion Control:

Congestion can occur when data arrives from a fast network to a slower network. Congestion
can also occur when multiple input streams arrive at a router whose output capacity is less than the
sum of the inputs. TCP is mainly used to avoid congestion in the network. To avoid the congestion,
some of the packets are dropped in the network. This may lead to retransmission of data packets.

Tool used: wireshark, tracepath

64

Experiment 3: Demonstration of Congestion Control Techniques in TCP protocol

1. Congestion control
In our Client-Server module, congestion can be observed at the Server when multiple clients try
to connect to it one after another. The figure below explains the fair share behavior of TCP. You can
make these observations yourself by running a concurrent server and connecting multiple clients to it

(with some small time difference- say a few seconds).

) Wireshark 10 Graphs: eth0 (tcp port 64443)

AL
I B LI B o o o o LI LA B B B B e R o B]
1 10s 20s 30s 40s 50s 60s 70s 80s
i Graphs X Axis
Graph 1| Color | Filter: Style: | Line - | Tickinterval:| 1sec =
'Craph 2| color Filter: tcp.stream== \Style: Line + | Pixels per tick: 10 2
| Graph 3| Filter: | |tcp.stream==1 Style: | Line z View as time of day
f | = = Y Axis
Graph 4| Color Filter: | | tcp.stream== Style: | Line =
Unit: Packets/Tick =
Graph 5 Filter: Style: | Line =
Scale: Auto =
Help Copy | Close | Save

2. Find Path MTU using Tracepath tool

project2@project2-OptiPlex-380:~% tracepath -n www.web.mit.edu

1: 172.16.90.4 0.106ms pmtu 1500
172.16.90.1 0.731ms
172.16.90.1 0.688ms
172.16.0.30 0.619ms
111.93.6.69 2.784ms
115.113.207.153 .604ms
172.31.16.193 .087ms
121.240.1.202 .918ms asymm 9
203.101.100.221 .747ms asymm 9
125.22.194.10 .582ms asymm 10

1:
1:
2:
3:
4:
5:
6:
7:
8:

User-Datagram Protocol (UDP):
User-Datagram Protocol is a transport layer protocol used by many internet applications. In
UDP, there is no handshaking between sending and receiving entities. For this reason, UDP is said to
be connectionless.

65

Checksum is the 16-bit one's complement of the one's complement sum of a pseudo header
of information from the IP header, the UDP header, and the data, padded with zero octets at the end
(if necessary) to make a multiple of two octets. In other words, all 16-bit words are summed using
one's complement arithmetic. The sum is then one's complemented to yield the value of the UDP
checksum field.

If the checksum calculation results in the value zero (all 16 bits 0) it should be sent as the
one's complement (all 1s).

Tool used: Wireshark

Experiment 4: Observation of UDP Header fields
1. Close all the browsers.
2. Run Wireshark in non-promiscuous mode with root privileges.
3. Download “udp_client.c” and “udp_server.c” from the CMS Website
4. Compile server first (as shown below).
gcc -o udp_serverudp_server.c
5. Similarly, compile the client using the following
command. gcc -o udp_clientudp_client.c
6. Run the server using the below command.
.Judp_server
7. The server will start, waiting for a client to connect. On a separate terminal window, run the client
using
.Judp_client 127.0.0.1
8. Payload size calculation

a. Observe any UDP packet. The total length of UDP is given by the length of the header

| No. Time Source Destination Protocol Length Sequence numb

» Frame 1: 43 bytes on wire (344 bits), 43 bytes captured (344 bits)
» Ethernet II, Src: 00:00:00 00:00:00 (00:00:00:00:00:00), Dst: 00:00:00 00:00:00 (0P:00:00:00:00:00)
» Internet Protocol Version 4, Src: 127.0.8.1 (127.8.0.1), Dst: 127.0.8.1 (127.8.0.1)
¥ User Datagram Protocol, Src Port: 40782 (40782), Dst Port: 4998 (4998)
Source port: 40782 (40782)
Destination port: 4998 (4998)
Length: 9
» Checksum: 8xfelc [validation disabled]
¥ Data (1 byte)
Data: 65
[Length: 1] t?

fields (8 bytes) plus the length of the data (1 bytes in this case).
Answer the following questions based on your understanding of the above experiment.
1. What is the source port number?

2. What is the destination port number?

66

3. What is the total length of the user datagram?
4. What is the length of the data?

References
> Wireshark User’s Guide:www.wireshark.org/docs/wsug html chunked/

67

http://www.wireshark.org/docs/wsug_html_chunked/

Experiment-9
Aim: To give an Introduction to Wireshark &tcpdump, and observation of packets in
a LAN network.

Packet Sniffer:

The basic tool for observing the messages exchanged between executing protocol entities is called a
packet sniffer. As the name suggests, a packet sniffer captures (“sniffs”) messages being
sent/received from/by your computer; it will also typically store and/or display the contents of the
various protocol fields in these captured messages. A packet sniffer itself is passive. It observes
messages being sent and received by applications and protocols running on your computer, but
never sends packets itself. Similarly, received packets are never explicitly addressed to the packet
sniffer. Instead, a packet sniffer receives a copy of packets that are sent/received from/by

application and protocols executing on your machine.

packet sniffer
pEEEEre el
! H
i packet } e application (e.g., www
: analyzer i application browser, ftp client)
A S
i operating
i system Transport (TCP/UDP)
packet = Network (1P)
% capture -‘%%% Link (Ethernet)
(pcap) = Physi
' ysical
L e ———-
S
to/from network to/from network

Figurel:PacketSnifferInternalStructure

We will be using the Wireshark packet sniffer [http://www.wireshark.org/] for these labs, allowing
us to display the contents of messages being sent/received from/by protocols at different levels of
the protocol stack. (Technically speaking, Wireshark is a packet analyzer that uses a packet capture
library in your computer). Wireshark is a free network protocol analyzer that runs on Windows,
Linux/Unix, and Mac computers. It’s an ideal packet analyzer for our labs—it is stable, has a large
user base and well-documented support includes a user guide.
(www.wireshark.org/docs/wsug_html_chunked/),manpages(www.wireshark.org/docs/man-
pages/),anda detailed FAQ (www.wireshark.org/fag.html), rich functionality that includes the

capability to analyze hundreds of protocols, and a well-designed user interface. It operates in

68

http://www.wireshark.org/
http://www.wireshark.org/docs/wsug_html_chunked/)
http://www.wireshark.org/docs/man-pages/)
http://www.wireshark.org/docs/man-pages/)
http://www.wireshark.org/faq.html)

computers using Ethernet, Token-Ring, FDDI,
serial(PPPandSLIP),802.11wirelessLANs,andATMconnections(iftheOSonwhichit's running allows
Wireshark to do so).

Capturing from wlon0 [Wireshark 1.8.2]

fiew Co Capture Analyze

¥

S o &8 Q¢ T4 868 ccocl BEEX ©
| Hiler: tep | Expression.. Clear Save
| Ne. 1ime source Destination Protocol Length Info
€3 8.875153000 74.125.236.211 192.168.221.139 TLSv1.2 155 Application Data, Application Data
€4 8.875254000 192,168.221.139 74.125.236.211 TCP 54 36472 > hT1ps TACK] S€G=1840 Ack=3865 Win=26249 Len=0
€5 8.974189609 215.34.181.96 192.168.221.139 HTTP 1275 HTTP/1.1 2660 DK (text/html)
€6 8.9/4246009 192,168.221.139 €1.96 P 5% 60913 > hitp [ACK] Sec=89> Ack=1222 Win=1/152 Ler=§
€/ 9.01820€009 192,168.221.139 E1.96 HITP 912 GE1 /download/strean/doc/javadoc/overvies-frame html HIIP/1.1
€8 9.0913513000 215,34.181.9 192.168.221.139 P 54 http > 68913 [ACK] Sec=1222 ACk=1063 Win=18648 Len=b
£Y 9.0226650809 192.168.221.139 216.34.181.96 (<] 73 60914 > hItp [SYN] Sec=0 Win=136€0 Len=o MSS=146€ SACK PERM=1 ISval=3/1/983€ ISecr=d Ws=128
©A 9.A23657A0A 215.34.187 .96 192.168.221.139 TP 65 http > AA914 [SYN, ACK] Seq=A Ack=1 Win=14600 | er=A MSS=146€ SACK_PFRN=1 WS=123
€1 9.A23686AAA 197 16R.221.139 216.34.781.96 TP 54 60914 > hotp [ACK] Sea=1 Ack=1 Win=14720 |en=0
©2 9.A23792AAA 192.168.221.139 216.34.781.96 HTTP 914 GFT /down | oad/strean/doc/javadoc/al L classes-frane .htnl HITP/1.1
©3 9.024944009 215.34.182.96 192.168.221.139 Tce 54 http > 68914 |ACK| Sec=1 Ack=851 Win=16334 Len=0
CR @ Q23004004 107 142 771 120 & M e DR Tro T4 GOOIE < hetn [EVA] Coan-O Win=11KE0 | an-0 MCC-14AC CAFK DEDN-T TCual-27179023 TCarr-0 WC-170 e

» Franc 85: 1275 bytes on wirc (1€200 bits), 1275 bytes capturcd (10200 bits) on interface 0

> Ethernet II, Src: Cisco Li 47:56:c5 (58:6d:8f:47:55:¢5), Dst: D LinkIn f7:2 (99:94:c4:17:37:¢1)

» Internet Protoccl Version 4, Src: 216.34.1€1.96 (216.34.101.96], Dst: 192,168.221.139 (192.160.221.13¢)
Transmi Control Protocol, Src Port: http (€0), Dst Port: 66913 (60313), Seq: 1, Ack: €05, Len: 1221

01 Frameset//EN' /3w W3 0rg/TR/html4/franeset dte

<HEAD>\nt
<i-- Genersled by javedoc on Mon Feb 18 21:45:51 EST 2013-->\n
<TITLE>\11
Genercled Cocumentalion (Untilled)\n
</TITLE>\n
<SCRIFT type="text/javascript*>\n

2rgetpag: " + window. Location.search:\n

if (targetPage !'= "" & targetPage != 'undefined*)\n

targetPage = targetPage.substring(1);\n

11 (targetpage. Lncexof (

targetpage

LLTIESC 21 44 4f
55 12 4c 19

Bd 65 73 63

Frame (1275 bytes) | Uncompressed entity bedy (1415 bytes)

@ Textitem (text), 102 bytes Packets: 611 Displayad: 140 Marked: 0 Prefile: Default

Figure2:Wireshark Snapshot Ubuntu

69

1.

Experimentl: Introduction to Wireshark

Install Wireshark using the following command. If already installed, then please go to

step2.(One can also install from Ubuntu Software Center).

Sudo apt-get install wireshark

OneneedsadministratorprivilegestoworkwithWireshark.RunWiresharkwithsudo privileges
(Type “sudowireshark” in the Terminal).

Goto Capture->Optionsmenu.Check“eth0” interface and uncheck all other interfaces.
Uncheck “Use promiscuous mode on all interfaces”.

Do packet capturing by clicking Capture->Start button. Now, the captured packets are
shown in the center window. Stop capture (Capture->Stop button).

o0 What is promiscuous mode of operation?

Filters—Therearedisplayfiltersandcapturefilters.Displayfilterscanbeusedonalready captured
packets. Specify “tcp” in the display filter and press “Apply”.

0 What is the observation?
Capturefiltersisusedtofilteranynewincoming/outgoingpackets.Capturefilterscanbe specified
in Capture->Options by typing in “Capture Filter” textbox.

Coloring rules—Depending on the protocol(IP,TCP,ARP,etc.)the color of the packet is
different. These rules can be changed accordingly (View->Coloring Rules...).
Goto capture->interfaces. This will show all the interfaces available in the system.
0 How many interfaces does your system have?
o Identify the IPaddress of “lo” interface.
Saving the output while capturing: After stopping the capture, do it from File->SaveAs.
0 Open try to open the pcap file in Wireshark.

70

Experiment 2: Introduction to tcpdump

Tcpdump is a common packet analyzer that runs under the command line. It allows the user to intercept and
display TCP/IP and other packets being transmitted or received over a network to which the computer is
attached. Distributed under theBSD license, tcpdump is free software. Tcpdump works on most Unix-like
operating systems: Linux, Solaris, BSD, OS X, HP-UX and AIX among others. In those systems, tcpdump uses the

libpcap library to capture packets. The port of tcpdump for Windows is called WinDump; it uses WinPcap, the
Windows port of libpcap.

abhishek@atop9kx:~$ sudo tcpdump -i wlan@ -c 5

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on wlan®@, link-type EN18MB (Ethernet), capture size 65535 bytes
:12.986911 IP atop9kx.local.58452 > 224.0.0.142.4551: UDP, length 64
:12.987015 IP6 feB0::9294:e4ff:Tef7:37c1.52803 = ffO2::142.4551: UDP, lengt

:12.987694 IP atop9kx.local.34535 > nsl.bits-hyderabad.ac.in.domain: 40492+
142.0.8.224.in-addr.arpa. (42)

:13.007276 IP 192.168.221.123.47027 = 224.0.0.142.4551: UDP, length 61
:13.008780 IP6 feB0::2Be:f2ff:feBa:eB®d7.35347 = ff02::142.4551: UDP, length

5 packets captured

101 packets received by filter
66 packets dropped by kernel
abhishek@atop9okx:~$

Figure3:tcpdump snapshot
If tcpdump is not already installed, run the below command to install it.

Sudo apt-get update
Sudo apt-get install tcpdump

1. Run tcpdump (with sudo privileges). Captured packets are displayed in each line (with
minimal information).

2. Explore the various options in tcpdump

0 —i=>used to specify the interface to listen on(example:-ieth0Q)

0 —c => used to limit the total number of packets captured (example: -c 100 will
capturel00 packets and will stop)

0 —p=>runin non-promiscuous mode

0 —A=>displays the packets in ASCII format(-XXtodisplayinHEXformat)

0 —D=>lists only the interfaces

0 —w=>capture and write to a file(example:-wsample.pcap)

0 tcp=>capture only TCP packets

71

IO IO

[@)

port<num>=>capture from a specific port no.
src<IP add#> => capture from specified source address. Try to differentiate sent and
received packets.

dst<IP add#> => capture from specified destination address. Try to differentiate sent
and received packets.

72

Experiment3: Observation of packets in a LAN network

Cyberoam
To ISP DNS server

Core switch Blade Server

Chassis

43X/ Distribution Switches

A

Access switch Access

\
)

Access switch

Hostelswmgs \ /

Hostels

Figured: A part of the BITS Hyderabad network

73

1. Close all browsers. Open a browser window and clear browser cache.

2. To view arp cache (On your Terminal: arp-a) (It displays MAC addresses, IP addresses,
interface names). Depending on the subnet, the IP addresses of Cyberoam, default
gateway, and DNS server will be shown.

3. Clear your system’s ARP cache(On your Terminal: ipneighflushall)

Put the eth0 interface down using ifconfigdown(as explained in previous lab session)
Launch tcpdump along with ifconfigup(with sudoprivileges).

0 sudoifconfig ethO up; sudotcpdump -i ethO ¢ 1000 p w sample.pcap

0 Open a couple of websites in your browser(ex.google.com, yahoo.com)

0 Wait for tcpdump to stop.
Open sample.pcap file in Wireshark.
Observe on Wireshark how your system receives an IP address from the DHCP service.
Identify the DHCP server’s IP address.
ObservetheARPpacketsbeingsent.ldentifythelPandMACaddressofyourdefaultgateway.
Observe the DNS query being made to resolve the IP address of the website you
visited. Identify the DNS server which responded to you.

10. By observing the packets in Wireshark, identify your own IP address and the IP address of
the website you visited.

11. Explore Statistics->Endpoints to identify entities involved in capture.

0 Differentiate for the rnet,|P,TCP,UDP etc.,

‘ Endpoints: p2pboxl 2011032619.pcap.clean.pcap = = 8

Ethernet: 4 | Fibre Channel | FDDI | IPvd: 2803 | IPv6 | IPX | JXTA | NCP | RSVP | SCTP | TCP: 938 | Token Ring | UDP: 2304 | USE | WLAN

Ethernet Endpoints
Address 4 Packets 4 Bytes 1 TxPackets 4 TxBytes 4 RxPackets 4 FxBytes 1
Dell 78:8b:3d 391806 361091870 182328 11 080 660 203478 350011 210
Dell_78:40:08 391777 361080 499 209485 350012935 182292 11077 564
Cisco_24:6c:31 36 3006 0 0 36 3096
Broadcast 7 1725 0 0 7 1725

V| Name resolution Limit te display filter

12.ExploreStatistics->Conversations to cover flows(pair of endpoints)
0 Observer different tabs(Ethernet,|P,TCP,UDPetc.).

0 SortondifferentcolumnsinTCP—e.g.Duration,Packets,AddressA,RelStartetc.
You may also experiment with “FollowStream” button on the popup dialog which adds a Display filter

74

‘ Conversations: p2pbox1.2011032619.pcap.clean.pcap (===

[Ethernet: 3] Fibre Channel | FoDI] 1Pws: 2798 | 1pvs | 1px | x4 e [Rsve | scTp| TCP:892 | Token Rina [ubP: 2301] usa] wLan |
TCP Conversations

Address) 4 Port/ 4 AddressB 4 PortB 4 Packi4 Bytes 4 Pack 4 BytesA—l 4 Packet 4 BytesA—B 4 RelStart 4 Duration 4 bps A—B ¥ bps A—B |
19216812 13000 0314525078 1031 10497 10378230 4707 10042635 5700 335604 1390836877000 S07.4232 99503.06 332500
19216812 13000 23813843 cifs 9384 10212680 4740 10060275 4604 252414 1240145184000 832789 O1117.54 2286.15
19216812 13000 15150214142 optka-emedia 8671 0640335 4448 0418280 4227 231055 1020510485000 055.2660 7897454 1925.00
19216812 13000 84125120158 mainsoft-lm 11771 12205024 6346 11083121 5425 312803 028354656000 12641737 7583212 1979.49
19216812 13000 20010334201 4424 9506 10336576 4833 10078312 4623 258264 844379330000 10698001 7535061 102114
1921681.2 13000 187.127.20511 upnotifyp 3029 3058066 1625 2077288 1404 80778 2334045250000 3367782 70724.01 191884
1921681.2 13000 180.183.74127 triquest-Im 9665 10309019 4725 10038395 4940 270621 675616357000 11417121 70339.26 1896.25
1921681.2 13000 15119148114 esp-Im 9853 10544605 4931 10265316 4924 279289 640236585000 11824345 69452.08 1889.59
19216512 13000 8817419391 citimaclient 11351 11868941 5933 11559825 5418 300116 58795824000 13754995 6723274 1797.84
19216812 13000 835484163 vest-control 2058 2077576 1151 2024601 907 52075 2416321004000 2548097 63564.33 1663.20
1921681.2 13000 87147797 spacp 5905 5991068 3129 531398 2776 159670 078475000 7779123 59969.72 1642.04
19216812 13000 18821625220 lomtallk-norm 7201 9091526 3627 BE95880 3574 195646 1428511210000 12427611 57265.26 1259.43
19216812 13000 824916149 Invconsole 5269 5489552 3000 5356815 2260 132737 1830.259611000 8021673 5342342 132378
19216812 13000 222336842 sonardata 152 156720 8L 152258 7 4462 2647726923000 233489 52167.98 152881

Name resolution [Limit to display filter

Help | [copy Follow Stream | | Grapha—8 | [GrephB—A | [Close

13.Explore Statistics->IOGraph for complete communication, and after filtering for TCP
communication.
0 Compare two TCP flows—e.g.stream6 and 4 below.

0 Observe the time slider below the graph.

M Wireshark 10 Graphs: p2pboxl 2011032619.pcap.cleansmall.pcap (o= ==

20s 40s 60s 80s 100s 120s
4| k
Graphs X Axis
[Graphl] Color [Filter:l tcp.stream eq 6 Style: |Line B Srnooth || Tick intervali 1 sec E
[Graph ZJ Color [Filter:l tcp.stream eq 4 Style: |Line B [¥] Srnooth PmEyaIEE 5 E
[View as time of day
’Graph 3] Colo [Filter:l Style: |Line B Smooth i
’Graph 4] Color [Filter:l Style: |Line B Smooth ||\ Bytes/Tick E
’Graph 5] Color [Filter:l Style: |Line B Smooth || Scale: Auto E
Smocth: Mo filter E
l Help] [Copy] [Save] l Close]

75

14.ExploreStatistics->FlowGraphtounderstandsequenceofeventsforthefilteredcapture.

- 1.201

cap.ch I.pcap - Graph Analysis ===

. 87.22.273 201.161.26.220 82.241159.23 =
192.168.1.2 81.248.43.238 Commen l

0.000000 Seq =1lAck=1

0.000020 Seq = 1045 Ack = 1

0.000118 Seq = 1573 Ack = 1

0010114 Sea = 1 Ack = 1049

0.010214 Seq = 2087 Ack = 1

0.010229 Seq = 2621 Ack = 1

0.011194 Seq = Lack=1

0.033301 Seq = LAck=1

0.033440 Sea=laAck=1

0.033466 Seq = 1453 Ack = 1

0.025319 Seq =1lAck=1

0.035453 Seq = Lack=1

0.035479 Seq = 1461 Ack = 1

0.043240 Seq = 1509 Ack = 1

0.070209 Seq =1lAck =1

0.070220 Seq = 4381 Ack = 1

0.080081 Seq = Lack=1 ik

« i 0

References

R

R

% WiresharkUser'sGuide:www.wireshark.org/docs/wsug html chunked/

< WiresharkWikiHelp:wiki.wireshark.org/

«» Tcpdumpdocumentation:www.tcpdump.org/#documentation

76

http://www.google.com/url?q=http%3A%2F%2Fwww.wireshark.org%2Fdocs%2Fwsug_html_chunked%2F&sa=D&sntz=1&usg=AFQjCNHmIPDZSzqJwe2WL5HhiL7sT8Hw3A
http://www.google.com/url?q=http%3A%2F%2Fwiki.wireshark.org%2F&sa=D&sntz=1&usg=AFQjCNEkoI9Ytw8QqucPhDtudEg1yDY3Ow
http://www.tcpdump.org/#documentation

Experimet-10

Aim: To analyze HTTP packets using Wireshark tool, and understand
the records returned by a DNS server.

HTTP (Hypertext Transfer Protocol):

The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed,
collaborative, hypermedia information systems. It is the foundation of data communication for
the World Wide Web. Hypertext is structured text that uses logical links (hyperlinks) between
nodes containing text. HTTP is the protocol to exchange or transfer hypertext.

HTTP functions as a request-response protocol in the client-server computing model. A
web browser, for example, may be the client and an application running on a computer
hosting a web site may be the server. The client submits an HTTP request message to the
server. The server returns a response message to the client. The response contains completion
status information about the request and may also contain requested content in its message
body.

Tools used: Wireshark
Experiment 1: Working of HTTP

1. Run Wireshark with sudo privileges. Start capturing in non-promiscuous mode.

2. Start up your web browser. Next, enter into your browserhttp://timesofindia.indiatimes.com.

3. Wait until the page is fully loaded. Now, stop the capture. Is your browser running HTTP version
1.0 or 1.1? What version of HTTP is the server running? (Refer Figure.1.)

Filter: | http ElExpresslon“. Clear Apply
No. Time Source Destination Protocol Length Info .
[2051.517620 ~ 172.16.90.16 23.11.235.41 ~ Hite 1347 GET /css _min.cms@version—O&minify—1 Wite/i.t 0 00]
[2061.317762 ~ 172.16.90.16 23.11.235.41 Wite 1341 GET /default_maincss.cms?v=i Wire/i.t 0 00]
| 2081.31871 ~ 172.16.90.16 23.11.235.41 ~ HITP 1346 GET /hp_css.cms?version—3&minify—1 Wrie/t.1 0000000000000 |
[2121.318850 ~ 172.16.90.16 23.11.235.41 HITP 1350 GET /newnavcss.cms?minify=1&ersion=17 Wiip/i.1 |
| 2131 318078 172.16.90.16 ______23.11.235.41 ______H1TP 1340 GET /before body_js.cms?version=1i&minify-L Hrp/L.1]

216 1.327607 74.125.236.57 172.16.90.16 501 HTTP/1.1 204 No Content

217 1.364388 23.11.235.41 172.16.90.16 HTTP 296 HTTP/1.1 304 Not Modified s

it »
)

&2 ansmission controI Protoco1 sr , Len: 1138
- Hypertext Transfer Protocol
= GET / HTTP/1.1\r\n
[Expert Info (Chat/Sequence): GET / HTTP/1.1\r\n]
Request Method: GET
Request URI: /
Request version: HTTP/1.1
Host: timesofindia.indiatimes.com\r\n
Connection: keep-alive\r\n
cache-control: max-age=0\r\n
Accept: text/html,application/xhtml+xml,application/xml;qg=0.9,image/webp,*/*;q=0.8\r\n

uUser-Agent: Mozilla/5.0 (windows NT 6.1) Applewebkit/537.36 (KHTML, like Gecko) chrome/32.0.1700.76 safari/537.36\r\n

DNT: 1\r\n

Accept-Encoding: gzip,deflate,sdch\r\n

Accept-Language: en-uUs,en;g=0.8\r\n

[truncated] Cookie: RegionID=76; ebNewBandwidth_.timesofindia.indiatimes.com=104%3A1386313466362; _em_vt=abd6af2737413674f355f980cb1a5240249198eec3-087660!

\r\n
[Full request URI: http://timesofindia.indiatimes.com/]

77

http://timesofindia.indiatimes.com/

Figure.l. HTTP Request and Responses

78

4. Type “http” in the display-filter-specification window, so that only captured HTTP
messages will be displayed later in the packet-listing window. A couple of the
responses would have a response code of 304 (Not modified). What does the “Last-
Modified” field imply? (Refer Figure.2.)

Filter: | http | +| Expression... Clear App!

Jo. Time Source Destination Protocol Length Info
217 1.364388 23.11.235.41 172.16.90.16 HTTP 296 HTTP/1.1 304 Not Modified
218 1.367632 23.11.235.41 172.16.90.16 HTTP 296 HTTP/1.1 304 Not Modified
210 1.368464 23.11.235.41 172.16.90.16 HTTP 296 HTTP/1.1 304 Not Modified

220 1.368467 23.11.235.41 172.16.90.16 HTTP 303 HTTP/1.1 304 Not Modified

234 1.654979 23.11.235.41 172.16.90.16 HTTP 296 HTTP/1.1 304 Not Modified

@ Frame 217: 296 bytes on wire (2368 bits), 296 bytes captured (2368 bits)
@ Ethernet II, src: Cisco_d7:d0:00 (00:22:0c:d7:d0:00), Dst: Del1_35:b5:8f (00:23:ae:35:b5:8f)
@ Internet Protocol version 4, src: 23.11.235.41 (23.11.235.41), Dst: 172.16.90.16 (172.16.90.16)
@ Transmission Control Protocol, Src Port: http (80), Dst Port: 57618 (57618), Seq: 1, Ack: 1288, Len: 242
= Hypertext Transfer Protocol
- HTTP/1.1 304 Not Modified\r\n
= [Expert Info (Chat/Sequence): HTTP/1.1 304 Not Modified\r\n]
[Message: HTTP/1.1 304 Not Modified\r\n]
[severity Tlevel: chat]
[Group: Sequence]
Request Version: HTTP/1.1
status Code: 304
Response Phrase: Not Modified
Content-Type: text/css;charset=IS0-8859-1\r\n
Last-mModified: Thu, 17 oct 2013 01:12:15 GMT\r\n
Expires: Fri, 17 oct 2014 01:12:14 GMT\r\n
Date: wed, 29 Jan 2014 06:47:32 GMT\r\n
connection: keep-alive\r\n
vary: Accept-encoding\r\n
\r\n

Figure.2. HTTP Not Modified page

5. Type “http.response.code==200" in the display-filter-specification window. Response
code of 200 implies that HTTP request got processed successfully and HTTP response is
sent to the browser window. You can explore different response codes like 304 (not
modified), 404 (not found) etc. (Refer Figure.3.)

Filter: ' http.response.code==200 IZ| Expression... Clear Apply
do. Time Source Drestination Protocol Length Info
21 0.383755 202.79.210.121 172.16.90.16 HTTP 425 HTTP/1.1 200 OK
122 1.015194 202.79.210.121 172.16.90.16 HTTP 425 HTTP/1.1 200 OK
266 1.714012 23.11.235.40 172.16.90.16 HTTP 1478 HTTP/1.1 200 oK (application/x-javascript)
272 1.745414 46.51.219.164 172.16.90.16 HTTP 384 HTTP/1.1 200 oKk (application/javascript)
280 1.843997 74.125.200.157 172.16.90.16 HTTP 457 HTTP/1.1 200 oK (GIF89a)
788 1 RAG1D2 72 11 228 A1 177 18 an 18 uTTD 1M A uTToD /1 0N N fravr /htrml?

Figure.3. HTTP Response Code

6. Type “http.cookie” in the display-filter-specification window.
A cookie is a small piece of data sent from a website and stored in a user's web browser
while the user is browsing that website. Every time the user loads the website, the
browser sends the cookie back to the server to notify the website of the user's previous

activity. (Refer Figure.4.)

79

Filter: | http [] Expression... clear Apply

lo. Time Source Destination Protocol Length Info

ekdestination=node HTTP/1.1 (application/x-www-fo

18 1.685615 172.16.2.196 172.16.90.16 HTTP 1514 Continuation or non-HTTP traffic

19 1.685617 172.16.2.196 172.16.90.16 HTTP 1514 continuation or non-HTTP traffic

23 1.686009 172.16.2.196 172.16.90.16 HTTP 1514 continuation or non-HTTP traffic

24 1.686012 172.16.2.196 172.16.90.16 HTTP 135 continuation or non-HTTP traffic

25 1.686014 172.16.2.196 172.16.90.16 HTTP 60 continuation or non-HTTP traffic[malformed packet]
o il
HFiaiie 0. /7Y UyLES Uli Wil € \UZ3Z UILd), /7Y UyLES Laplui €U \UZ5Z UiLd

Ethernet II, Src: Dell_35:b5:8f (00:23:ae:35:b5:8f), Dst: Cisco_d7:d0:00 (00:22:0c:d7:d0:00)
E
Transmission Control Protocol, Src Port: 58182 (58182), Dst Port: http (80), Seq: 1, Ack: 1, Len: 725
-/ Hypertext Transfer Protocol
POST /drupal6/?q=node&destinati de HTTP/1.1\r\n
Host: 172.16.2.196\r\n
connection: keep-alive\r\n
content-Length: 117\r\n
cache-control: max-age=0\r\n
Accept: text/html,application/xhtml+xml,application/xml;qg=0.9,image/webp,*/%;q=0.8\r\n
origin: http://172.16.2.196\r\n
User-Agent: Mozilla/5.0 (windows NT 6.1) Applewebkit/537.36 (KHTML, 1ike Gecko) chrome/32.0.1700.76 Ssafari/537.36\r\n
content-Type: application/x-www-form-urlencoded\r\n
DNT: 1\r\n
Referer: http://172.16.2.196/drupal6/\r\n
Accept-Encoding: gzip,deflate,sdch\r\n
Accept-Language: en-uUS,en;q=0.8\r\n
Cookie: SESS141057415451d03e6867d2a0605ffb62=5725d72r4gehh1krIm600g0464\r\n

]

\ri\n
Full reauest URT: httn://172.16.2.196/drunalé/?0=node&destinarion=nodel
1240 2C b> be 3b /1 3d 30 Ze 38 0d 0Oa 43 bT bf bb b9 ,en;gq=0. ¥..CooK1

1250 65 3a 20 53 45 53 53 31 34 31 30 35 37 34 31 35 e: SESS1 41057415
1260 34 35 31 64 30 33 65 36 38 36 37 64 32 61 30 36 451d03e6 867d2a06
1270 30 35 66 66 62 36 32 3d 35 37 32 35 64 37 32 72 05ffb62= 5725d72r
12280 34 67 65 68 68 31 6b 72 6¢ 6d 36 30 6f 67 30 34 4gehhikr 1m600g04
1290 36 34 0d Oa 0d Oa 6e 61 6d 65 3d 74 65 73 74 69 64....na me=testi
)2a0 6e 67 26 70 61 73 73 3d 74 65 73 74 70 61 73 73 ng&pass= testpass
122b0 77 6f 72 64 26 6f 70 3d 4c 6f 67 2b 69 6e 26 66 word&op= Log+in&f
12c0 6f 72 6d 5F 62 75 69 6c 64 5f 69 64 3d 66 6f 72 orm_buil d_id=for
)2d0 6d 2d 35 30 31 62 33 32 35 62 63 35 37 37 36 65 m-501b32 5bc5776e
12e0 65 65 36 64 30 36 32 32 33 65 38 33 61 33 64 62 ee6d0622 3e83a3db

Figure.4. HTTP Cookie

7. Persistent v/s Non-Persistent HTTP connections. Do you see Connection: keep-alive set

in your packet captures?

8. HTTP proxy set-up (Work in a team of two. First member will install proxy server and
other will connect from a client)
i. Install tinyproxy in Ubuntu (In the terminal: sudo apt-get install tinyproxy)
ii. Open tinyproxy.conf file using vi or gedit (In the terminal: sudo vi /etc/tinyproxy.conf)
iii. Uncomment the line “Allow 172.16.0.0/12” (Refer the figure below). By this,
you are allowing anyone on 172.16.xx.yy to connect to your machine.
Alternatively you may restrict access to one or few machines. To allow access to
only your client, type the client machine’s IP address (add the following entry in
the file: Allow <<IP of client>>) if you choose to do this, DO NOT uncomment

the entry which was specified above.

iv. Save the file and exit.

80

MaxRequestsPerchild &

ALllow 127.0.0.1

Allow 17z2.16.0.0/12z1

Figure.5. Tinyproxy configuration file

Now, restart Tinyproxy for the changes to take place. In the terminal: sudo /etc/init.d/tinyproxy stop
sudo /etc/init.d/tinyproxy start

Default port which is used by Tinyproxy is 8888.

Do the following on the other teammate’s PC (i.e., the client):

In Firefox, go to Edit - Preferences - Advanced tab ->Network tab = Click on Settings
—>Check ‘Manual proxy configurations’ >enter IP of proxy server and port (default port is 8888).

21 RexE
F ==k = Q. oo i i~ —(\l
Yol o D& S)
i | =& . - ‘j \3 . b?‘d? For Students
— | General Tabs Content Applications Privacy Security Sync GRS
Home >

General Data Choices | Network |Update Certificates

Connection

Configure how Firefox connects to the Internet Settings... b-2014

Cached Web Content

Your web content cache is currently using 16.1 NSRS ol T Y4 L B3 1

Override automatic cache management .
N Configure Proxies to Access the Internet

No proxy
OFffline Web Content and User Data Auto-detect proxy settings for this network

Your application cache is currently using 0 bytes Use system proxy Settings

- @ Manual proxy configuration:
& Tell me when a website asks to store data fol SN E
) . HTTP Proxy: | 172.16.90.5 Port: 8888 -
The Following websites are allowed to store dat —

& Use this proxy server for all protocols

No Proxy for:

& cor Help localhost, 127.0.0.1

81

Figure.6. Firefox Settings

Now, on your client’s Firefox, connect towww.google.com, and capture packets on Wireshark (i)

Firstly, when you are connected to the proxy, and (ii) Secondly, without being connected to the

proxy. What differences do you observe?
When not connected to proxy, you can see the connection being made with www.google.com

eth1 [Wireshark 1.6.7]

-— File Edit View Go

Bwe + ¥4 BB

Filter: Expression.

@

e ouwfE E#&EmEX

No. Time Source Destination Protocol Length Info
211.182692 172.16.96.11 202.56.230.2 DNS 74 Standard query A www.google.com
22 1.238239 202.56.230.2 172.16.96.11 DNS 290 Standard query response A 74.125.236.80 A 74.125.236.84 A 74.125.236.83 A 74.125.236.81 A 74.125.236.82

23 1.238512 172.16.96.11 262.56.236.2 DNS 74 Standard query A www.google.com
|

DNS 74.125 2 A 36.48 A 74.125.236.50
o 1 TSvalcage: w128
261267958 74.125.2: 216911 TP 66 https > 38580 [SYN, ACK] Seq=0 Ack=l Win=14
27 1.28799%6 .16.90.11 74.125.236.49 Tcp 54 38980 > https [ACK] Seg=1 Ack=1 Win=14726 Len=
28 1.288232 172.16.90.11 74.125.236.49 TLSv1 225 Client Hello
29 1.288323 74.125.236.49 172.16.90.11 Tce 60 https > 38980 [ACK] Seg=1 Ack=172 Win=15744 Len=0

Figure.7. Response while not connected to proxy

i. When connected to the proxy, you can only see the proxy server!! (in this case,
172.26.90.4)

11:50AM % bot3 i

eth1 [Wireshark 1.6.7]

w Tools Internals Help
= Q T 42 BB scufF SEEX @

Filter: Expression...

Sl No. Time Source Destination Protocol Length Info
8660 6.90. ~ 172.16.90.4 03 35784 > ddi-tcp-1 [PSH, g=1 Ack= 31
2 0.000049 172.16.96.11 172.16.90.4 TCP 103 35786 > ddi-tcp-1 [PSH, ACK] Seq=1 Ack=1 Win=227 Len=37 TSval=30281 TSecr=2418252895

3 0.600076 172.16.96.11 172.16.90.4 Tce 103 35781 > ddi-tcp-1 [PSH, ACK] Seq=1 Ack=1 Win=557 Len=37 TSval=30281 TSecr=2418253081

4 0.000099 172.16.90.11 172.16.90.4 TCP 103 35787 > ddi-tcp-1 [PSH, ACK] Seg=1 Ack=1 Win=272 Len=37 TSval=30281 TSecr=2418252912

50.000241 172.16.90.4 172.16.96.11 TCP 66 ddi-tcp-1 > 35781 [ACK] Seq=1 Ack=38 Win=168 Len=0 TSval=2418264117 TSecr=30281

6 0.012845 172.16.90.4 172.16.90.11 Tce 103 ddi-tcp-1 > 35784 [PSH, ACK] Seg=1 Ack=38 Win=147 Len=37 TSval=2418264120 TSecr=36281
7 0.812907 172.16.90.11 172.16.90.4 TCP 66 35784 > ddi-tcp-1 [ACK] Seq=38 Ack=38 Win=331 Len=0 TSval=30284 TSecr=2418264120

8 0.815705 172.16.96.4 172.16.90.11 TCcP 103 ddi-tcp-1 > 35787 [PSH, ACK] Seg=1 Ack=38 Win=153 Len=37 TSval=2418264121 TSecr=36281
9 0.015729 172.16.96.11 172.16.90.4 TCP 66 35787 > ddi-tcp-1 [ACK] Seq=38 Ack=38 Win=272 Len=0 TSval=30285 TSecr=2418264121

10 0.018006 172.16.96.4 172.16.90.11 TCP 103 ddi-tcp-1 > 35781 [PSH, ACK] Seq=1 Ack=38 Win=168 Len=37 TSval=2418264121 TSecr=30281
11 ©.618026 172.16.90.11 172.16.90.4 TCP 66 35781 > ddi-tcp-1 [ACK] Seq=38 Ack=38 Win=557 Len=0 TSval=30285 TSecr=2418264121

12 0.621373 172.16.90.4 172.16.96.11 TCP 103 ddi-tcp-1 > 35786 [PSH, ACK] Seq=1 Ack=38 Win=161 Len=37 TSval=2418264122 TSecr=30281

Figure.8. Response while connected to proxy

After you are done with your experiments, it is recommended to stop tinyproxy because if
you're going to leave Tinyproxy running all the time, it will eventually eat all your memory and
lock up your server.

sudo /etc/init.d/Tinyproxy stop
Before you leave, please remove tinyproxy from your machine so that the next lab’s students

can have the opportunity to configure it themselves.

sudo apt-get remove tinyproxy

DNS (Domain Name Server):

The Domain Name System (DNS) is a hierarchical naming system for computers
participating in the Internet. It associates information with domain names assigned to each of
the participants. Most importantly, it translates domain names meaningful to humans into the

numerical (binary) identifiers associated with networking equipment for the purpose of

82

http://www.google.com/
http://www.google.com/

locating and addressing these devices world- wide.

An often-used analogy to explain the Domain Name System is that it serves as the

phone book for the Internet by translating human-friendly computer hostnames into IP

addresses. For example, the domain name “www.example.com” translates to the address

93.184.216.119 (IPv4).

83

http://www.example.com/

Experiment 2: Understanding the records returned by DNS website

1. Open “network-tools.com/nslook/” in a web browser. This website provides an online

tool for DNS lookups.
2. Type “bits-pilani.ac.in” in the domain textbox (as shown in Figure. 9). Click “Go” button.
NsLookup

Query the DNS for resource records

domain | bits-pilani.ac.in query type | ANY - Any type =
server (67.222.132.212 query class | IN-Internet
port |53 timeout (ms) 5000
1 norecursion | advanced output 9%

67.222.132.213 is a non-cached DNS Server

[67.222.132.212] returned a non-authoritative response in 359 ms:

Answer records

name class type data time to live
bits-pilani.ac.in IN A 202.78.175.200 86400s (1d)
bits-pilani.ac.in IN SOA server: ns1.bits-pilani.ac.in 86400s (1d)

email: root@bits-pilani.ac.in

serial: 2014121201

refresh: 1200

retry: 900

expire: 3600000

minimum ttl: 36000
bits-pilani.ac.in IN NS ns2.bits-pilani.ac.in 86400s (1d)
bits-pilani.ac.in IN NS ns1.bits-pilani.ac.in 86400s (1d)
bits-pilani.ac.in IN MX preference: 19 86400s (1d)

exchange: aspmx2.googlemail.com

bits-pilani.ac.in N MX preference: 19 86400s (1d)
exchange: aspmx3.googlemail.com

bits-pilani.ac.in 1] MX preference: 11 86400s (1d)
exchange: aspmx.l.google.com
bits-pilani.ac.in N M preference: 15 86400s (1d)

exchange: altl.aspmx.l.google.com

bits-pilani.ac.in 1M A preference: 15 86400s (1d)
exchange: altZ.aspmx.l.google.com

bits-pilani.ac.in N TXT w=spfl include:_spf.google.com —~all 86400s (1d)
Authority records
[none]

Additional records

name class type data time to live

ns1l.bits-pilani.ac.in 1M A 202.78.175.200 86400s (1d)

ns2.bits-pilani.ac.in 1IN A 115.249.18.10 86400s (1d)
—end -

84

http://network-tools.com/nslook/

Figure.9. DNS Non-authoritative response

What is displayed in the Answer records?
0 What is the destination port number of the query message? What is the IP
address to which the query message is sent?

How many additional records are found in the DNS response?
0 What are the IP addresses of BITS name servers?

3. Type “bits-pilani.ac.in” in the domain (as shown in Figure. 10). Change the server

NSLOOku p Query the DNS for resource records

domain |bits-pilani.ac.in query type | ANY -Any type =
server |202.78.175.200 query class | IN-Internet =
port |53 timeout (ms) 5000
| norecursion | advanced output 9%

67.222.132.213 is a non-cached DNS Server

[202.78.175.200] returned an authoritative response in 314 ms:

Answer records

name class type data time to live
bits-pilani.ac.in IN A 202.78.175.200 86400s (1d)
bits-pilani.ac.in IN SOA server: ns1.bits-pilani.ac.in 86400s (1d)

email: root@bits-pilani.ac.in

serial: 2014121201

refresh: 1200

retry: 900

expire: 3600000

minimum ttl: 36000
bits-pilani.ac.in IN NS ns2.bits-pilani.ac.in 86400s (1d)
bits-pilani.ac.in IN NS nsl.bits-pilani.ac.in 86400s (1d)

address to “202.78.175.200”. Click “Go” button.

Figure.10. DNS Authoritative response

0 What is an authoritative response?

4. Type “root-servers.net” in the domain (as shown in Figure.11.). Click “Go” button.
0 What is displayed in Answer records?
0 What is the total number of root servers?

85

0 What is displayed in the Additional records?
0 Whatis the IPv4 and IPv6 address of a.root-servers.net?

Query the DNS for reso

domain |rook-servers.net query type | ANY - Any type -
server |67.222.132.212 query class | IN - Internet =
port |53 timeout (ms) |5000
[no recursion || advanced output 99y

67.222.132.213 is a non-cached DMS Server

[67.222.132.212] returned a non-authoritative response in 86 ms:

Answer records

name class type data time to live
root-servers.net 1M SOA semnver: a.root-servers.net 604800s (7d)

email: nstld@verisign-grs.com

serial: 2014110500

refresh: 14400

retry: T200

expire: 1209600

minirmum ttl: 3600000
root-servers.net IN NS i.root-servers.net 604800s (7d)
root-servers.net IN NS k.root-servers.net 6048005 (7d)
root-servers.net IN NS b.root-servers.net 604800s (7d)

86

root-sernvers.net IN NS f.root-servers.net 604800s (7d)

root-sernvers.net IM NS g.root-sernvers.net 604800s (7d)
root-servers.net] NS h.root-servers.net 604300s (7d)
root-senvers.net IN NS d.root-servers.net 604800s (7d)
root-servers.net IN NS e.root-servers.net 6048300s (7d)
root-servers.net I NS a.root-servers.net 604800s (7d)
root-senvers.net IN NS j-root-senvers.net 604800s (7d)
root-servers.net IN NS m.root-sernvers.net 604800s (7d)
root-servers.net] NS l.root-servers.net 604800s (7d)
root-servers.net 1IN NS c.root-servers.net 604800s (7d)

Authority records
[none]

Additional records

name class type data time to live
a.root-senvers.net 1M A 198.41.0.4 604800s (7d)
b.root-servers.net 1M A 192.228.79.201 604800s (7d)
c.root-servers.net 1IN A 192.33.4.12 604800s (7d)
d.root-servers.net 1IN A 199.7.91.13 604800s (7d)
e root-servers.net 1IN A 192.203.230.10 604800s (7d)
f.root-servers. net I Y 192.5.5.241 504800s (Fd)
g.root-servers.net 1N Fat 192.112.35.4 604300s (7d)
h.root-servers . .net I~ A 128.63.2.53 504200s (7d)
i.root-senvers. net I~ A 192.36.148.17 504200s (7d)
j-root-servers. net I~ oy 192.58.128.30 504800s (7Fd)
kK.root-servers.net 1IN Fat 193.0.14.129 504300s (7Fd)
l_root-senvers. net I~ ot 199.7.83.42 604300s (7d)
m.root-servers.net I~ A 202.12.27.33 504200s (7d)
— end —
Figure.11. DNS Root servers
References

>Wireshark HTTP: http://code.bretonstyle.net/?page_id=176

>Tinyproxy link1: http://www.justinmccandless.com/blog/Set+Up+Tinyproxy+in+Ubuntu
>Tinyproxy link2: http://www.gypthecat.com/tinyproxy-a-quick-and-easy-proxy-server-on-ubuntu
>0nline DNS Lookup Tool: network-tools.com/nslook

87

